Проекты

Конечно-элементное моделирование краш-теста прицепа

Инженерами АО «ЦИФРА» выполнена серия вычислительных краш-тестов автомобильного рамного прицепа, в результате чего определены характеристики энергопоглощения прицепа, а также его деформированное состояние при наезде на него движущегося транспорта при различных скоростях.

Помимо своего основного предназначения – перевозки различных грузов в составе с транспортным средством (ТС), прицепы применяются и в других целях. В частности, легковые прицепы часто используются дорожно-ремонтными службами как временное ограждение на оживленных участках дорог, на котором проводятся ремонтные или эксплуатационные работы (см. рис. 1).

Рисунок 1  Прицеп прикрытия при проведении дорожно-ремонтных работ 

Для оценки эффективности применения таких прицепов в качестве временных заграждений с точки зрения безопасности как работников дорожно-ремонтных служб, так и участников дорожного движения, необходимо выполнять анализ возможных аварийных ситуаций при столкновении прицепа и движущегося транспорта. Поскольку натурные краш-тесты, как правило, дорогостоящи и требуют значительного времени, на сегодняшний день подобные задачи решаются при помощи конечно-элементного моделирования. Инженерами АО «ЦИФРА» решена серия модельных задач наезда транспортного средства на прицеп, выполнен анализ поглощения кинетической энергии при ударе и развития пластических деформаций в элементах прицепа. Расчеты выполнены в наиболее консервативной постановке, при которой вся кинетическая энергия движущегося ТС преобразуется в энергию деформации прицепа, а само ТС является недеформируемым.

Моделирование краш-тестов обычно сопряжено с высокими скоростями, большими перемещениями и поворотами, развитой физической нелинейностью и сложным контактным взаимодействием. На сегодняшний день наиболее передовым и популярным инструментом для решения высоконелинейных динамических задач является код Ansys/LS-DYNA, реализующий метод конечных элементов. Решение выполняется методом прямого интегрирования уравнений движения по явной центрально-разностной схеме.

Постановка задачи

Геометрия

Рассматривается одноосный легковой прицеп рамной конструкции, в передней части которого расположено сцепное устройство, а в задней – бампер (см. рис. 2).

Рисунок 2 – Геометрическая модель несущего остова прицепа

Основные несущие элементы выполнены из квадратной трубы 150х150 мм с толщиной стенки 4-5 мм и соединяются между собой при помощи сварки и болтов. Все элементы конструкции прицепа выполнены из высокопрочной стали с пределом текучести 600 МПа.

Конечно-элементная модель

Движущееся транспортное средство, которое совершает наезд на прицеп, представлено как идеальная недеформируемая плоская стена массой 1.67 т, движущаяся по нормали к прицепу со стороны бампера. Рассматривается три удара с различной начальной скоростью: 10 м/с (36 км/ч), 20 м/с (72 км/ч) и 30 м/с (108 км/ч). Транспортное средство, стоящее перед прицепом, моделируется как неподвижное абсолютно твердое тело (*RIGIDWALL_PLANAR). Сцепление с ним моделируется как граничное условие запрета всех трансляционных степеней свободы. Контактное взаимодействие между абсолютно твердыми телами (АТТ) и прицепом, а также контакт отдельных элементов прицепа между собой при больших деформациях обеспечивается благодаря автоматическому контактному алгоритму *CONTACT_AUTOMATIC_SINGLE_SURFACE (см. рис. 3).

Рисунок 3 – Постановка задачи фронтального краш-теста прицепа

Для подготовки конечно-элементной сетки был использован автоматический сеточный генератор Ansys Meshing. Все элементы прицепа аппроксимируются полноинтегрируемыми оболочечными конечными элементами (*SECTION_SHELL ELFORM=16). Из модели исключены некоторые конструктивные элементы, несущественные с точки зрения расчета. Сварные соединения моделируются «склеенным» контактом (*CONTACT_TIED_SURFACE_TO_SURFACE) либо объединением конечно-элементных сеток, болтовые – заменой болтов на абсолютно твердые тела-связи (*CONSTRAINED_NODAL_RIGID_BODY) и заданием контактного взаимодействия.

Краш-тесты характеризуются высокими скоростями деформаций и значительными пластическими деформациями, поэтому для описания физических соотношений была выбрана модель Купера-Саймондса (*MAT_PIECEWISE_LINEAR_PLASTICITY). Данная модель основана на критерии текучести Мизеса и учитывает влияние скорости деформаций в материале на его прочностные характеристики.

Результаты

Поскольку предназначение прицепа – ограждение зоны проведения дорожно-ремонтных работ и обеспечение безопасности работников, то его эффективность определяется способностью поглотить кинетическую энергию движущегося ТС, деформируясь.

Согласно одному из фундаментальных законов физики, полная энергия в замкнутой системе должна оставаться постоянной. Однако, численное решение задачи вносит некоторую ошибку в энергетический баланс системы в виде паразитной энергии (hourglass energy), накапливающейся из-за нефизичного деформирования конечно-элементной сетки. Поэтому в ходе решения задачи важно следить, чтобы величина паразитной энергии была несопоставимо меньше энергии деформации в системе и не могла повлиять на результаты расчета.

В результате моделирования краш-теста в данной постановке установлено, что прицеп во всех случаях оказывается способен поглотить всю кинетическую энергию ТС, с которым он сталкивается. При этом различная скорость удара оказывает влияние на характер деформирования и скорость поглощения кинетической энергии. Рассмотрим каждый расчетный случай подробнее.

Удар на скорости 10 м/с (36 км/ч)

В случае столкновения на скорости 10 м/с рама прицепа деформируется практически полностью упруго, за исключением локальных зон развития пластических деформаций. К 0.037 с расчета движущееся ТС останавливается, а его кинетическая энергия полностью преобразуется в энергию деформации конструкции прицепа. Энергия упругой деформации создает пружинящее действие, за счет которого движущееся ТС отскакивает назад. 

Удар на скорости 20 м/с (72 км/ч)

При столкновении на скорости 20 м/с возникают значительные неупругие деформации в области сцепления со стоящим впереди ТС, а также в болтовых и сварных соединениях бампера. Кинетическая энергия движущегося ТС полностью поглощается конструкцией прицепа к 0.045 с расчета. Из-за необратимых деформаций упругого отскока не происходит.

Удар на скорости 30 м/с (108 км/ч)

При столкновении на скорости 30 м/с пластические деформации развиваются также в средней части продольных элементов рамы прицепа, за счет чего прицеп начинает «складываться». Движущееся ТС полностью останавливается к 0.1 с процесса, преобразуя кинетическую энергию в энергию деформации элементов прицепа. Из-за развитых пластических деформаций упругого отскока, как и в предыдущем случае, не происходит.

Заключение

Столкновение транспортных средств – высокоскоростной динамический процесс, который протекает за считанные доли секунды и характеризуется значительными неупругими деформациями и повреждениями. Математическое моделирование краш-тестов на сегодняшний день обладает высокой предсказательной силой, а также гораздо дешевле физических экспериментов, что в совокупности делает его ключевым инструментом при анализе эффективности проектных решений.

В статье рассмотрена модельная задача наезда движущегося ТС на легковой прицеп, использующийся для временного ограждения при проведении дорожно-ремонтных работ. Различные начальные скорости движущегося ТС оказывают значительное влияние на характер деформирования прицепа; тем не менее, в диапазоне скоростей атаки 10–30 м/с (36–108 км/ч) конструкция прицепа оказывается способна полностью поглотить кинетическую энергию движущегося ТС.

Связанные новости
Продолжаем серию интервью с командой «ЦИФРА». Наш эксперт Алексей Петров рассказал о карьерном пути, а также возможностях и перспективах применения численного моделирования в области судостроения.
Сегодня стартует серия интервью с командой «ЦИФРА». Еженедельно мы будем публиковать новый выпуск, в котором наши коллеги расскажут о своём карьерном пути и профессиональных интересах, поделятся планами и мечтами.
Связанные публикации в блоге
Архитекторы, инженеры и другие специалисты строительной отрасли сталкиваются с растущим на них давлением, по вопросам соответствия стандартамэнергоэффективности и понижения уровня выбросов углекислого газа при сохранении затрат. Значительное ускорение процесса проектирования зданий при наименьших затратах наилучшим образом достигается за счёт использования новых технологий. Появившийся класс инструментов на базе численного моделирования, моделирование зданий и моделирование физических процессов достигли новых высот скорости и точности, совершенствуя процесс проектирования зданий и другие рабочие процессы с помощью новых возможностей. Численное моделирование открывает мир моделирования для фирм любого размера, работающих над проектами любого масштаба.
Ограждающие конструкции зданий и сооружений проходят проверку на звукоизолирующую способность. Соответствие бетонных/железобетонных перекрытий нормам по звукоизоляции оценивается путем проведения натурных или лабораторных испытаний на воздействие воздушного и ударного шума
Связанные вебинары
В рамках Договора о научно-техническом сотрудничестве между АО «ЦНИИМФ» и АО «ЦИФРА» на данном вебинаре заведующий отделом конструктивной надежности и защиты судов от коррозии АО «ЦНИИМФ» Алексей Петров расскажет об имеющемся опыте и перспективах использования компьютерного моделирования для решения различных задач, связанных с ремонтом или модернизацией судов в эксплуатации.
АО "ЦИФРА" объявляет о проведении серии лекций-вебинаров от ведущих приглашенных экспертов в области численного моделирования. В ходе первого вебинара данной серии будут рассмотрены вопросы прочностного анализа «легких» (lightweight) композитных конструкций при динамическом нагружении с использованием явных решателей (сеточного и бессеточного) ПО LS-DYNA.

Закажите расчет

Команде профессионалов
Изменить файл
Поля, отмеченные звездочкой (*) обязательны для заполнения.