8 812 123 45 67
Конечно-элементное моделирование краш-теста прицепа

Инженерами АО «ЦИФРА» выполнена серия вычислительных краш-тестов автомобильного рамного прицепа, в результате чего определены характеристики энергопоглощения прицепа, а также его деформированное состояние при наезде на него движущегося транспорта при различных скоростях.

Помимо своего основного предназначения – перевозки различных грузов в составе с транспортным средством (ТС), прицепы применяются и в других целях. В частности, легковые прицепы часто используются дорожно-ремонтными службами как временное ограждение на оживленных участках дорог, на котором проводятся ремонтные или эксплуатационные работы (см. рис. 1).

Рисунок 1  Прицеп прикрытия при проведении дорожно-ремонтных работ 

Для оценки эффективности применения таких прицепов в качестве временных заграждений с точки зрения безопасности как работников дорожно-ремонтных служб, так и участников дорожного движения, необходимо выполнять анализ возможных аварийных ситуаций при столкновении прицепа и движущегося транспорта. Поскольку натурные краш-тесты, как правило, дорогостоящи и требуют значительного времени, на сегодняшний день подобные задачи решаются при помощи конечно-элементного моделирования. Инженерами АО «ЦИФРА» решена серия модельных задач наезда транспортного средства на прицеп, выполнен анализ поглощения кинетической энергии при ударе и развития пластических деформаций в элементах прицепа. Расчеты выполнены в наиболее консервативной постановке, при которой вся кинетическая энергия движущегося ТС преобразуется в энергию деформации прицепа, а само ТС является недеформируемым.

Моделирование краш-тестов обычно сопряжено с высокими скоростями, большими перемещениями и поворотами, развитой физической нелинейностью и сложным контактным взаимодействием. На сегодняшний день наиболее передовым и популярным инструментом для решения высоконелинейных динамических задач является код Ansys/LS-DYNA, реализующий метод конечных элементов. Решение выполняется методом прямого интегрирования уравнений движения по явной центрально-разностной схеме.

Постановка задачи

Геометрия

Рассматривается одноосный легковой прицеп рамной конструкции, в передней части которого расположено сцепное устройство, а в задней – бампер (см. рис. 2).

Рисунок 2 – Геометрическая модель несущего остова прицепа

Основные несущие элементы выполнены из квадратной трубы 150х150 мм с толщиной стенки 4-5 мм и соединяются между собой при помощи сварки и болтов. Все элементы конструкции прицепа выполнены из высокопрочной стали с пределом текучести 600 МПа.

Конечно-элементная модель

Движущееся транспортное средство, которое совершает наезд на прицеп, представлено как идеальная недеформируемая плоская стена массой 1.67 т, движущаяся по нормали к прицепу со стороны бампера. Рассматривается три удара с различной начальной скоростью: 10 м/с (36 км/ч), 20 м/с (72 км/ч) и 30 м/с (108 км/ч). Транспортное средство, стоящее перед прицепом, моделируется как неподвижное абсолютно твердое тело (*RIGIDWALL_PLANAR). Сцепление с ним моделируется как граничное условие запрета всех трансляционных степеней свободы. Контактное взаимодействие между абсолютно твердыми телами (АТТ) и прицепом, а также контакт отдельных элементов прицепа между собой при больших деформациях обеспечивается благодаря автоматическому контактному алгоритму *CONTACT_AUTOMATIC_SINGLE_SURFACE (см. рис. 3).

Рисунок 3 – Постановка задачи фронтального краш-теста прицепа

Для подготовки конечно-элементной сетки был использован автоматический сеточный генератор Ansys Meshing. Все элементы прицепа аппроксимируются полноинтегрируемыми оболочечными конечными элементами (*SECTION_SHELL ELFORM=16). Из модели исключены некоторые конструктивные элементы, несущественные с точки зрения расчета. Сварные соединения моделируются «склеенным» контактом (*CONTACT_TIED_SURFACE_TO_SURFACE) либо объединением конечно-элементных сеток, болтовые – заменой болтов на абсолютно твердые тела-связи (*CONSTRAINED_NODAL_RIGID_BODY) и заданием контактного взаимодействия.

Краш-тесты характеризуются высокими скоростями деформаций и значительными пластическими деформациями, поэтому для описания физических соотношений была выбрана модель Купера-Саймондса (*MAT_PIECEWISE_LINEAR_PLASTICITY). Данная модель основана на критерии текучести Мизеса и учитывает влияние скорости деформаций в материале на его прочностные характеристики.

Результаты

Поскольку предназначение прицепа – ограждение зоны проведения дорожно-ремонтных работ и обеспечение безопасности работников, то его эффективность определяется способностью поглотить кинетическую энергию движущегося ТС, деформируясь.

Согласно одному из фундаментальных законов физики, полная энергия в замкнутой системе должна оставаться постоянной. Однако, численное решение задачи вносит некоторую ошибку в энергетический баланс системы в виде паразитной энергии (hourglass energy), накапливающейся из-за нефизичного деформирования конечно-элементной сетки. Поэтому в ходе решения задачи важно следить, чтобы величина паразитной энергии была несопоставимо меньше энергии деформации в системе и не могла повлиять на результаты расчета.

В результате моделирования краш-теста в данной постановке установлено, что прицеп во всех случаях оказывается способен поглотить всю кинетическую энергию ТС, с которым он сталкивается. При этом различная скорость удара оказывает влияние на характер деформирования и скорость поглощения кинетической энергии. Рассмотрим каждый расчетный случай подробнее.

Удар на скорости 10 м/с (36 км/ч)

В случае столкновения на скорости 10 м/с рама прицепа деформируется практически полностью упруго, за исключением локальных зон развития пластических деформаций. К 0.037 с расчета движущееся ТС останавливается, а его кинетическая энергия полностью преобразуется в энергию деформации конструкции прицепа. Энергия упругой деформации создает пружинящее действие, за счет которого движущееся ТС отскакивает назад. 

Удар на скорости 20 м/с (72 км/ч)

При столкновении на скорости 20 м/с возникают значительные неупругие деформации в области сцепления со стоящим впереди ТС, а также в болтовых и сварных соединениях бампера. Кинетическая энергия движущегося ТС полностью поглощается конструкцией прицепа к 0.045 с расчета. Из-за необратимых деформаций упругого отскока не происходит.

Удар на скорости 30 м/с (108 км/ч)

При столкновении на скорости 30 м/с пластические деформации развиваются также в средней части продольных элементов рамы прицепа, за счет чего прицеп начинает «складываться». Движущееся ТС полностью останавливается к 0.1 с процесса, преобразуя кинетическую энергию в энергию деформации элементов прицепа. Из-за развитых пластических деформаций упругого отскока, как и в предыдущем случае, не происходит.

Заключение

Столкновение транспортных средств – высокоскоростной динамический процесс, который протекает за считанные доли секунды и характеризуется значительными неупругими деформациями и повреждениями. Математическое моделирование краш-тестов на сегодняшний день обладает высокой предсказательной силой, а также гораздо дешевле физических экспериментов, что в совокупности делает его ключевым инструментом при анализе эффективности проектных решений.

В статье рассмотрена модельная задача наезда движущегося ТС на легковой прицеп, использующийся для временного ограждения при проведении дорожно-ремонтных работ. Различные начальные скорости движущегося ТС оказывают значительное влияние на характер деформирования прицепа; тем не менее, в диапазоне скоростей атаки 10–30 м/с (36–108 км/ч) конструкция прицепа оказывается способна полностью поглотить кинетическую энергию движущегося ТС.

вернуться к списку новостей
Рассчитать стоимость онлайн
Сообщите основную информацию о вашей задаче, ответьте на несколько вопросов и мгновенно получите оценку трудоемкости актуальной для вас инженерной задачи.
Узнать цену
Связанные новости
27 сентября 2024

VII Научно-техническая конференция «Технологии обустройства нефтяных, газовых и газоконденсатных месторождений»

23-25 сентября делегация АО «ЦИФРА» приняла участие в работе VII Научно-технической конференции «Технологии обустройства нефтяных, газовых и газоконденсатных месторождений».
Новости
22 июля 2024

Математическое моделирование роботов манипуляторов для атомных станций малой мощности

Атомная станция малой мощности (АСММ) — это один из перспективных проектов Госкорпорации «Росатом». Такие станции предназначены для удалённых районов с неразвитой сетевой инфраструктурой, где нецелесообразно строить мощные АЭС. АСММ обладают рядом преимуществ, таких как энергонезависимость, экологически чистое производство энергии и стабильное снабжение электричеством и теплом труднодоступных территорий.
Новости
Связанные публикации в блоге
7 октября 2024

Применение аддитивных технологий в промышленности

Аддитивные технологии, более известные как 3D-печать, активно меняют облик современной промышленности, предоставляя предприятиям новые возможности для оптимизации и ускорения производственных процессов. Так, методы аддитивного производства, основанные на принципе послойного создания объектов, предлагают компаниям решения, которые зачастую сложно реализовать с использованием традиционных производственных методов.
Блог
26 августа 2024

Строительная и промышленная акустика: математическое моделирование и инженерные расчёты

Акустическое моделирование является ключевым инструментом в современном мире, оказывая существенное влияние на разнообразные сферы нашей жизни. Этот процесс, основанный на математических и физических принципах, позволяет анализировать и предсказывать поведение звуковых волн в различных средах. Моделирование играет важнейшую роль в достижении желаемых акустических характеристик, будь то создание эффективных систем шумоподавления или оптимизация акустики в архитектурных пространствах.
Блог
Связанные вебинары
23 июля 2020

Применение компьютерного моделирования при ремонте и модернизации судов

В рамках Договора о научно-техническом сотрудничестве между АО «ЦНИИМФ» и АО «ЦИФРА» на данном вебинаре заведующий отделом конструктивной надежности и защиты судов от коррозии АО «ЦНИИМФ» Алексей Петров расскажет об имеющемся опыте и перспективах использования компьютерного моделирования для решения различных задач, связанных с ремонтом или модернизацией судов в эксплуатации.
Вебинары
3 июня 2020

Моделирование и расчёт композитных конструкций при динамическом нагружении

АО "ЦИФРА" объявляет о проведении серии лекций-вебинаров от ведущих приглашенных экспертов в области численного моделирования. В ходе первого вебинара данной серии будут рассмотрены вопросы прочностного анализа «легких» (lightweight) композитных конструкций при динамическом нагружении с использованием явных решателей (сеточного и бессеточного) ПО LS-DYNA.
Вебинары
Расскажите о вашей задаче
Изменить файл
Поля, отмеченные звездочкой (*) обязательны для заполнения.
Успешно отправлено! Наш специалист свяжется с Вами в ближайшее время!