В работе исследуется работа электронной пушки в процессе разогрева. С помощью численного моделирования в ANSYS Fluent определяется время выхода устройства на установившийся режим работы.
Вебинар: Оценка климатической комфортности общественных, офисных и промышленных помещений в различных типах зданий по ГОСТ Р ИСО 7730/Ashrae 55
Комфортность пребывания людей в помещении – критически важная характеристика всех общественных, офисных и промышленных зданий. Для того, чтобы обеспечить адекватные обогрев, вентиляцию и кондиционирование, необходимо тщательно проработать соответствующие решения. Математическое моделирование позволяет оценить качество принятых решений ещё до ввода здания в эксплуатацию и оперативно устранить все возникающие проблемы.
Конечной целью теплового расчета является сокращение времени выхода на стационарный режим для рассматриваемого устройства. Первостепенной задачей является получение результатов численного моделирования, согласующихся с результатами имеющихся натурных испытаний. На последующих этапах должны быть проанализированы различные варианты нагрева электронной пушки, с целью получить требуемое время выхода на установившийся режим работы.
Электронная пушка — устройство, с помощью которого получают пучок электронов с заданной кинетической энергией и заданной конфигурации. Чаще всего используется в кинескопах и других электронно-лучевых трубках, СВЧ-приборах, а также в различных приборах, таких как электронные микроскопы и ускорители заряженных частиц. Работа электронной пушки возможна только в условиях глубокого вакуума, чтобы пучок электронов не рассеивался при столкновении с молекулами атмосферных газов.
Электронная пушка работает в условиях вакуума 10-5 Па внутри прибора. При работе устройства происходит интенсивный теплообмен между частями конструкции посредством теплопроводности и излучения. Конвективным теплообменом внутри прибора можно пренебречь. Вследствие нагрева происходит термомеханическая деформация устройства, которая влияет на эксплуатационные характеристики прибора. Нормальная работа устройства возможна только в условиях установившегося режима работы.
Первостепенной целью теплового расчета является получение графиков температуры катода, перемещения сетки и катода от времени. После получения этих данных необходимо проверить, насколько они сходятся с результатами натурного эксперимента.
Конечно-элементная сетка строится с использованием алгоритма Patch Conforming и метода, при котором создаются тетраэдральные элементы с использованием элементов первого порядка. Результатом стала сетка, содержащая в себе 652707 узлов и 3817100 элементов. При переходе к решению тепловой задачи в ANSYS Fluent сетка конвертирована в полиэдрическую. Это сделано для оптимизации ресурсов, повышения точности и скорости решения задачи.
Задача решается в нестационарной постановке. Теплонагруженной деталью является катод, который обладает собственным постоянным тепловыделением. В качестве граничного условия с внешней стороны прибора заданы конвективный теплообмен с окружающей средой (температура окружающей среды +25°С) и излучение в окружающую среду.
В результате решения нестационарной задачи теплопередачи и термомеханики получены распределения температур и перемещений всех точек сборки в зависимости от времени.
По данным выполненных расчетов построены графики, на которых приведено сравнение результатов численного моделирования и полученных ранее данных натурных испытаний.
Результаты теплового расчета хорошо коррелируют с экспериментом, что дает основания полагать о корректности численной модели и настроек расчета.