Новости

Расчет воздействия горячих струй двигателей на охлаждаемую преграду

Специалисты Центра инженерно-физических расчетов и анализа (АО "ЦИФРА") совместно с сотрудниками БГТУ «Военмех» им. Д.Ф. Устинова завершили работы по моделированию и расчету взаимодествия горячих струй двигателей летательных аппаратов на охлаждаемую преграду с помощью программного пакета ANSYS Fluent.

В настоящее время в мировой практике реализованы и в разной степени успешно применяются несколько способов взлета летательных аппаратов с авианесущего корабля: вертолетный взлет; взлет при помощи катапульты; взлет при помощи трамплина. Высокие параметры тяговооруженности отечественных корабельных истребителей позволяют использовать для их взлета с авианосца трамплин, который представляет собой плавную горку в носовой части корабля. Она обеспечивает самолету при сходе с палубы вертикальную составляющую скорости, что дает возможность сократить дистанцию разбега.

При взлете с носового трамплина летчик испытывает небольшие продольные перегрузки и полностью контролирует ситуацию. С другой стороны, старт с трамплина, происходящий при относительно невысоких скоростях поступательного движения, диктует строгие требования к тяговооруженности летательного аппарата, характеристикам его устойчивости и управляемости. Двигатели выводятся на взлетный режим еще до начала разбега. Чтобы предотвратить возможное повреждение оборудования авианосца и стоящих позади летательных аппаратов горячими газами работающих на максимальных режимах двигателей самолетов, в составе авиационно-технических средств корабля предусмотрены подъемные охлаждаемые преграды - газоотражательные щиты, которые устанавливаются на пути распространения горячих газовых струй. Высокие значения тепловых потоков, воспринимаемые преградой, могут привести к ее прогару, вследствие чего в конструкции газоотражательных щитов используют системы жидкостного охлаждения.

ГОЩ

При проектировании газоотражательных щитов актуальными для моделирования и расчета являются следующие задачи:

  • определение газодинамической и тепловой обстановки в зоне взаимодействия высокотемпературных струй двигателей с преградой для выявления области, безопасной для работы персонала и техники;
  • моделирование сопряженного теплообмена, представляющего интерес для разработки или оптимизации конструкции системы охлаждения газоотражательных щитов.

В работе решена задача газодинамики и сопряженного теплообмена при взаимодействии высокотемпературных струй с газоотражающей преградой. Решение получено средствами численного моделирования в пакете Ansys Fluent на основе осредненных по Рейнольдсу уравнений Навье–Стокса, для замыкания которых применяются различные дифференциальные модели турбулентности.

ГОЩ модель

На первом этапе исследований проведена верификация моделей турбулентности на основе решения тестовых задач и сопоставления результатов с экспериментом. Рассмотренные модели турбулентности показали существенное завышение (до 20%) температуры на оси струи по сравнению с экспериментом. Согласование данных расчета и эксперимента достигнуто за счет корректировки констант в модели турбулентности.

Трехмерные нестационарные расчеты проведены на блочно-структурированных сетках, число ячеек изменялось от 1 до 3 млн. в зависимости от параметров задачи. Для исследования теплового нагружения струй на элементы газоотражателей выполнено решение сопряженной газодинамической и тепловой задачи о конвективном и лучистом теплообмене горячих струй с поверхностью преграды.

Nozzle small

Промоделирована работа системы жидкостного охлаждения газоотражателей. Проведены параметрические исследования влияния угла наклона газоотражательной преграды на формирование границ зоны высоких значений скорости и температуры.

Связанные новости
19 апреля 2022 года состоялось заседание секции №6 «Прочность и надежность строительных конструкций зданий и сооружений» Экспертного совета по аттестации программ для ЭВМ при Научно-техническом центре по ядерной и радиационной безопасности (ФБУ «НТЦ ЯРБ») Ростехнадзора.
В марте 2022 года эксперт по судостроению АО «ЦИФРА» Алексей Петров принял участие в натурных испытаниях буксировки судна во льдах по Северному морскому пути. Буксировка выполнялась универсальным атомным ледоколом «Сибирь» проекта 22220, введенным в эксплуатацию в декабре 2021 года.
Связанные публикации в блоге
Современная архитектура охватывает множество различных стилей и направлений. Одной из наиболее распространённых характеристик современной архитектуры является отказ от прямых и резких линий в пользу более изогнутых и плавных, а также наличие открытых жилых пространств.
Открытие летних веранд ресторанов способствует увеличению количества посадочных мест и привлекательности со стороны клиентов в летний период. В условиях ограничительных мер в связи с эпидемией коронавируса это также возможность продолжать работу, избегая вынужденных простоев. На большей части территории России летний сезон, к сожалению, короткий и не всегда достаточно тёплый, в связи с этим экономический эффект от организации открытых веранд оказывается недостаточно велик, а сами веранды зачастую не пользуются большой популярностью из-за погодных условий. Использование различных типов обогревателей для создания комфортных условий для посетителей и продления сезона работы открытых веранд – достаточно распространённый способ решения этих проблем.
Связанные вебинары
На данном вебинаре вы узнаете, как с помощью инструментов численного моделирования Ansys можно сократить время и издержки на разработку и испытания приборов и электронного оборудования, испытывающего механические и тепловые нагрузки.

Закажите расчет

Команде профессионалов
Изменить файл
Поля, отмеченные звездочкой (*) обязательны для заполнения.