Блог

Моделирование распространения шума через плиту перекрытия

Ограждающие конструкции зданий и сооружений проходят проверку на звукоизолирующую способность. Соответствие бетонных/железобетонных перекрытий нормам по звукоизоляции оценивается путем проведения натурных или лабораторных испытаний на воздействие воздушного и ударного шума

Испытания проводятся в соответствии с ГОСТ 27296-2012 «Методы измерения звукоизоляции ограждающих конструкций». Также данным нормативным документом регламентируются методы и аппаратура для измерения звукоизоляции. Все испытания по измерению звукоизоляции перекрытий проводятся в третьоктавном диапазоне частот от 100 Гц до 3150 Гц, так как именно в данном диапазоне частот звук воспринимается человеческим ухом. 

Лабораторные испытания проводят в специальных реверберационных помещениях, а на этапе проектирования провести натурные испытания невозможно. Именно поэтому численное моделирование звукоизолирующей способности является актуальным направлением исследований в области акустики.

В качестве демонстрации возможностей при решении акустических задач проведем сравнение звукопоглощающей способности двух плит: многопустотной плиты типа 1ПК (рисунок 1) и сплошной плиты 1П. Сравнение будет проводиться по изоляции воздушного и ударного шумов.

Рисунок 1 – Многопустотная плита

Измерение изоляции воздушного шума

В процессе моделирования и обработки результатов необходимо руководствоваться ГОСТ 27296-2012.  В соответствии с ним, воздушный шум должен представлять собой диффузное звуковое поле (звуковое поле в замкнутом объеме, образованное отражениями от поверхностей и характеризуемое равномерным распределением уровня звука и уровня звукового давления по всему объему и равновероятностью направлений прихода звуковых волн в любую точку помещения).

Для проведения виртуальных испытаний на воздействие воздушного шума используется акустический модуль Ansys Harmonic Acoustics, который содержит необходимое граничное условие Diffuse Sound Field (DSF, Диффузное звуковое поле). Данное граничное условие создает набор случайных плоских волн, направленных под случайными углами, что является прямым аналогом диффузного звукового поля в натурных условиях. 

На границах акустического домена под плитой использовано граничное условие излучения. Плита жестко закреплена по кромке. На рисунке 2 представлены действующие граничные условия и воздействия.

Рисунок 2 – Граничные условия при измерении изоляции воздушного шума

В задаче моделируется идеализированная картина звукопередачи (только через плиту перекрытия) без передачи акустических колебаний по косвенным путям – через несущие и конструктивные элементы здания (стены), а также щели и отверстия (окна, дверные проемы). 

В качестве результатов расчетов выступают спектры изоляции воздушного шума в третьоктавной полосе частот (рисунок 3).  Спектр изоляции представляет собой распределение значений изоляции воздушного шума почастотно (на каждой из частот третьоктавного диапазона).

Рисунок 3 – Спектры изоляции воздушного шума

Используя полученные распределения изоляции, можно качественно сравнить звукопоглощающую способность рассматриваемых плит. Таким образом, определяем, что сплошная плита обладает лучшей изоляционной способностью на более высоких частотах (от 400 Гц до 2000 Гц), чем многопустотная.

Также, используя полученные результаты, можно провести оценку изоляционной способности перекрытий одним числом – определить индекс изоляции воздушного шума в соответствии с методикой, приведенной в ГОСТ 27296-2012. Для рассматриваемых плит индексы изоляции воздушного шума составляют 66 дБ и 68 дБ соответственно для сплошной и многопустотной плит. 

Таким образом, звукоизоляционная способность по воздушному шуму для сплошной и многопустотной плит почти одинакова. Однако, многопустотная плита является более оптимальным выбором, так как она пригодна для прокладывания в ее отверстиях различных коммуникаций.

Измерение изоляции ударного шума

Для испытаний по определению изоляционной способности плиты к ударному шума используются специализированные ударные машины. 

В расчетной модели нам необходима только часть этой ударной машины, а именно тело молотка, он изображен на рисунке 4 и представляет собой цилиндр со сферической ударной частью.

Рисунок 4 – Граничные условия при измерении изоляции ударного шума

Для моделирования распространения ударного шума и получения результирующего акустического давления использован модуль Ansys Transient Structural. Расчетная модель состоит из плиты перекрытия и акустической области (домена), в которой моделируется распространение акустических колебаний. На границах акустического домена использованы граничные условия излучения. Аналогичные граничные условия использованы для многопустотной плиты перекрытия.

В испытаниях плит на воздействие ударного шума по ГОСТ 27296-2012 молоток устанавливают на высоте 40 мм.

Распределение уровня ударного шума в заданной частотной области получено преобразованием Фурье колебаний давления во временной области (рисунок 5).

Рисунок 5 – Спектры уровня звукового давления

Исходя из результатов расчета на изоляцию ударного шума, уровень звукового давления за многопустотной плитой выше, чем за сплошной. Это говорит о том, что многопустотная плита хуже поглощает воздействие ударного шума.

Заключение

Рассмотренный пример охватывает только небольшую часть из огромного перечня задач акустики, которые можно решить с использованием Ansys. В рамках строительства это расчеты изоляции не только бетонных междуэтажных перекрытий, но и ограждающих конструкций с окнами, дверьми и изоляционными покрытиями.

Рассматривая другие области применения моделирования акустики, можно отметить следующие интересные задачи: минимизация шума от машин и механизмов на рабочих местах, задачи распространения акустических колебаний под водой, моделирование акустики концертных залов, моделирование акустики звукозаписывающих студий и прочее.  

 

Связанные новости
19 апреля 2022 года состоялось заседание секции №6 «Прочность и надежность строительных конструкций зданий и сооружений» Экспертного совета по аттестации программ для ЭВМ при Научно-техническом центре по ядерной и радиационной безопасности (ФБУ «НТЦ ЯРБ») Ростехнадзора.
АО «ЦИФРА» приняла участие в треке «Математическое моделирование» в рамках образовательного форума "Phygital universe", который проходил в Санкт-Петербургском политехническом университете Петра Великого. 27 апреля руководитель инженерной группы АО «ЦИФРА» Юрий Лавров, а также инженеры Рубцов Иван и Васильева Дарья выступили в Высшей школе теоретической механики с презентацией проектов из инженерной практики. 29 апреля Юрий и Дарья оценивали навыки математического моделирования и инженерного мышления участников форума при решении практического кейса от АО «ЦИФРА». По результатам защиты кейсов выбрано 5 победителей, которые получат дополнительные 10 баллов при поступлении в магистратуру в СПбПУ.
Связанные публикации в блоге
Бронеодеждой или БО согласно ГОСТ 34286-2017 называют средства индивидуальной броневой защиты, выполненные в виде пальто, накидок, плащей, костюмов, курток, брюк, комбинезонов, жилетов и т.п., предназначенные для периодического ношения с целью защиты туловища и (или) конечностей человека (за исключением стоп ног и кистей рук) от воздействия холодного оружия и огнестрельного стрелкового оружия, а также поражения осколками (далее - средства поражения). БО применяется тогда, когда может потребоваться защита жизни и здоровья человека. Она классифицируется и для нее проводятся испытания согласно назначенным классам.
Основной эксплуатационной характеристикой судна, определяющей возможности работы судна в ледовых условиях, является его ледовый класс. В прошлом каждое классификационное общество имело свою уникальную систему классификации судов ледового плавания, и, как следствие – свои нормативные требования к таким судам, однако в начале 2000-х годов Международной ассоциацией классификационных обществ (МАКО) была проведена работа по унификации этих требований, результатом которой стало введение двух систем классификации судов ледового плавания: системы балтийских ледовых классов (для плавания в Балтийском море и схожих по ледовым условиям морях) и системы полярных классов (для плавания в полярных водах), при этом требования каждого классификационного общества-члена МАКО остались в силе. Со вступлением в силу в 2017 году Международного кодекса для судов, эксплуатирующихся в полярных водах (Полярного кодекса) особенно актуальным стал вопрос присвоения судну полярного класса. Несмотря на то, что МАКО была определена приблизительная эквивалентность ледовых классов различных систем классификации (см. рис. 1), на практике для получения полярного класса необходимо подтверждение соответствия судна требованиям IACS UR I – requirements concerning Polar Class. Эти требования разделяются на корпус и механические установки. Рассмотрим пример выполнения анализа соответствия механических установок судна полярному классу.
Связанные вебинары
В рамках Договора о научно-техническом сотрудничестве между АО «ЦНИИМФ» и АО «ЦИФРА» на данном вебинаре заведующий отделом конструктивной надежности и защиты судов от коррозии АО «ЦНИИМФ» Алексей Петров расскажет об имеющемся опыте и перспективах использования компьютерного моделирования для решения различных задач, связанных с ремонтом или модернизацией судов в эксплуатации.
АО "ЦИФРА" объявляет о проведении серии лекций-вебинаров от ведущих приглашенных экспертов в области численного моделирования. В ходе первого вебинара данной серии будут рассмотрены вопросы прочностного анализа «легких» (lightweight) композитных конструкций при динамическом нагружении с использованием явных решателей (сеточного и бессеточного) ПО LS-DYNA.

Закажите расчет

Команде профессионалов
Изменить файл
Поля, отмеченные звездочкой (*) обязательны для заполнения.