Специалистами АО «ЦИФРА» выполнено численное моделирование течения многокомпонентной смеси газов в процессе задымления жилого помещения и последующем процессе дымоудаления с использованием модели species transport в программном комплексе Ansys Fluent [1]. Системы дымоудаления в случае возгорания играют ключевую роль в обеспечении безопасности и защиты жизни человека. Использование методов численного моделирования позволяет оценить эффективность системы вентиляции в части дымоудаления, а также подобрать оптимальные режимы её работы при различных сценариях возгорания.
Вебинар: Оценка климатической комфортности общественных, офисных и промышленных помещений в различных типах зданий по ГОСТ Р ИСО 7730/Ashrae 55
Комфортность пребывания людей в помещении – критически важная характеристика всех общественных, офисных и промышленных зданий. Для того, чтобы обеспечить адекватные обогрев, вентиляцию и кондиционирование, необходимо тщательно проработать соответствующие решения. Математическое моделирование позволяет оценить качество принятых решений ещё до ввода здания в эксплуатацию и оперативно устранить все возникающие проблемы.
Регистрация →
Постановка задачи
В качестве объекта исследования выбрано жилое помещение (квартира) и межквартирный коридор (рисунок 1). Очаг возгорания (диван) находится в помещении квартиры. Приточно-вытяжная вентиляция расположена в межквартирном коридоре, двери которого полагаются закрытыми и не учитываются в расчётной модели.
Рисунок 1 – Расчётная геометрическая модель с габаритными размерами
В процессе расчёта моделируется перенос компонентов смеси и их перемешивание в пространстве расчётного помещения. Продукты сгорания представляют из себя смесь газов, состоящую из следующих компонентов:
- углекислый газ (), молярная доля – 35%;
- водяной пар (), молярная доля – 65%.
Воздух, поступающий через приточную вентиляцию, состоит из:
- азота (), массовая доля – 77%;
- кислорода (), массовая доля –23%.
Основные исходные данные для проведения расчёта приведены в таблице 1. Принято, что на момент возгорания приточно-вытяжная вентиляция находится в выключенном состоянии, а окно и двери квартиры открыты.
Таблица 1 – Исходные данные для проведения моделирования
Массовый расход продуктов сгорания, кг/с |
0,3 |
Максимальная температура продуктов сгорания, °С |
950 |
Массовый расход воздуха через приточно-вытяжную вентиляцию, кг/с |
5 |
Температура воздуха, подаваемого через вентиляцию, °С |
20 |
Расчётный сценарий
На рисунке 2 представлена временная шкала расчётного сценария. Полное расчётное время составляет 480 секунд. Задымление помещения моделируется до 300 расчётной секунды, затем осуществляется постепенное затухание очага возгорания: в течение 30 секунд значение массового расхода продуктов сгорания линейно уменьшается до нулевой отметки. Вместе с этим на 300 секунде включается приточно-вытяжная вентиляция: выход на рабочий режим осуществляется в течение 10 секунд расчётного времени путём увеличения по линейному закону значения массового расхода воздуха, подаваемого через вентиляцию.
Рисунок 2 – Временная шкала расчётного сценария
Результаты
По результатам моделирования процесса задымления и дымоудаления в жилом помещении получена анимация распределения углекислого газа по расчётному объёму (анимация 1). Данный продукт сгорания выбран целевым для анализа, поскольку при больших концентрациях является одним из наиболее вредных и опасных для жизни человека.
Анимация 1 – Распределение массовой доли углекислого газа по расчётному объёму
Для проведения количественного анализа результатов моделирования в расчётном объёме выбраны 5 контрольных точек. Все контрольные точки располагаются на расстоянии 1,4 м от уровня пола жилого помещения. На рисунке 3 указано расположение и нумерация контрольных точек.
Рисунок 3 – Расположение и нумерация контрольных точек
На рисунке 4 приведён график изменения массовой доли углекислого газа в выбранных контрольных точках в зависимости от времени расчёта. На графике отчётливо наблюдается резкое снижение массовой доли углекислого газа в момент включения вентиляции. На конечный момент расчёта средняя по объёму помещения квартиры массовая доля углекислого газа составляет около 1,5%.
Рисунок 4 – График изменения массовой доли углекислого газа в зависимости от времени
На анимации 2 показано распределение температуры смеси воздуха и продуктов сгорания по расчётному объёму в процессе моделирования.
Анимация 2 – Распределение температуры смеси воздуха и продуктов сгорания по расчётному объёму
На рисунке 5 приведён график изменения температуры смеси воздуха и продуктов сгорания в зависимости от времени. На конечный момент моделирования средняя температура в помещении квартиры с очагом возгорания составляет около 34 °С.
Рисунок 5 – График изменения температуры смеси газов в зависимости от времени
На рисунке 6 показано распределение массовой доли углекислого газа в поперечном сечении квартирного помещения, проходящем через очаг возгорания, в момент включения приточно-вытяжной вентиляции (300 секунд расчётного времени).
Рисунок 6 – Распределение массовой доли углекислого газа в поперечном сечении квартирного помещения, проходящем через очаг возгорания, в момент включения приточно-вытяжной вентиляции (расчётное время 300 с)
На рисунке 7 показано распределение температуры смеси воздуха и продуктов сгорания в поперечном сечении квартирного помещения, проходящем через очаг возгорания, в момент включения приточно-вытяжной вентиляции (300 секунд расчётного времени).
Рисунок 7 – Распределение температуры смеси воздуха и продуктов сгорания в поперечном сечении квартирного помещения, проходящем через очаг возгорания, в момент включения приточно-вытяжной вентиляции (300 секунд расчётного времени)
На анимации 3 показано распределение воздуха, поступающего из приточной вентиляции с использованием линий тока, окрашенных по модулю скорости. По этой анимации видно, что поступление воздуха из приточной вентиляции в помещение с очагом возгорания минимально. Дымоудаление и охлаждение нагретого воздуха происходит за счёт забора воздуха вытяжной вентиляцией (анимация 4). Приточная вентиляция выполняет функцию компенсации удаляемого воздуха.
Анимация 3 – Распределение воздуха, поступающего из приточной вентиляции
Анимация 4 – Распределение воздуха, поступающего в вытяжную вентиляцию
Заключение
По итогам моделирования задымления и дымоудаления в жилом помещении осуществлён качественный и количественный анализ полученных расчётных результатов. В ходе подобного анализа могут быть получены сведения о распределении вредных продуктов сгорания в пространстве моделируемого помещения, определена концентрация продуктов сгорания в любой контрольной точке, получены распределения температуры смеси воздуха и продуктов сгорания в зависимости от расчётного времени моделируемого процесса. Помимо этого, подобное исследование позволяет определить оптимальные параметры систем дымоудаления ещё на этапе проектирования или проверить эффективность уже установленной вентиляции. В ходе моделирования может быть воспроизведён любой расчётный сценарий, например, можно выбирать любое положение источника пожара, изменять состав продуктов сгорания, подбирать режим работы вентиляции, модернизировать проектировку помещения и расположение в ней приточно-вытяжной вентиляций. Иными словами, в ходе моделирования можно быстро и качественно воспроизводить эксперименты, которые затруднительно или даже невозможно было бы осуществить в натурных условиях.
Список использованных источников
1.Ansys Fluent, Release 2023 R1, Help System, Fluent help, Theory Guide, 14.8 Modeling Species Transport in Multiphase Flows, ANSYS, Inc.