8 812 123 45 67
Моделирование процессов задымления и дымоудаления в жилом помещении

Специалистами АО «ЦИФРА» выполнено численное моделирование течения многокомпонентной смеси газов в процессе задымления жилого помещения и последующем процессе дымоудаления с использованием модели species transport в программном комплексе Ansys Fluent [1]. Системы дымоудаления в случае возгорания играют ключевую роль в обеспечении безопасности и защиты жизни человека. Использование методов численного моделирования позволяет оценить эффективность системы вентиляции в части дымоудаления, а также подобрать оптимальные режимы её работы при различных сценариях возгорания.

Постановка задачи

В качестве объекта исследования выбрано жилое помещение (квартира) и межквартирный коридор (рисунок 1). Очаг возгорания (диван) находится в помещении квартиры. Приточно-вытяжная вентиляция расположена в межквартирном коридоре, двери которого полагаются закрытыми и не учитываются в расчётной модели.
Рисунок 1 – Расчётная геометрическая модель с габаритными размерами
 
В процессе расчёта моделируется перенос компонентов смеси и их перемешивание в пространстве расчётного помещения. Продукты сгорания представляют из себя смесь газов, состоящую из следующих компонентов:
  • углекислый газ (), молярная доля – 35%;
  • водяной пар (), молярная доля – 65%.
Воздух, поступающий через приточную вентиляцию, состоит из:
  • азота (), массовая доля – 77%;
  • кислорода (), массовая доля –23%.
Основные исходные данные для проведения расчёта приведены в таблице 1. Принято, что на момент возгорания приточно-вытяжная вентиляция находится в выключенном состоянии, а окно и двери квартиры открыты.
 
Таблица 1 – Исходные данные для проведения моделирования
Массовый расход продуктов сгорания, кг/с 0,3
Максимальная температура продуктов сгорания, °С 950
Массовый расход воздуха через приточно-вытяжную вентиляцию, кг/с 5
Температура воздуха, подаваемого через вентиляцию, °С 20

 

Расчётный сценарий

На рисунке 2 представлена временная шкала расчётного сценария. Полное расчётное время составляет 480 секунд. Задымление помещения моделируется до 300 расчётной секунды, затем осуществляется постепенное затухание очага возгорания: в течение 30 секунд значение массового расхода продуктов сгорания линейно уменьшается до нулевой отметки. Вместе с этим на 300 секунде включается приточно-вытяжная вентиляция: выход на рабочий режим осуществляется в течение 10 секунд расчётного времени путём увеличения по линейному закону значения массового расхода воздуха, подаваемого через вентиляцию.  
 
Рисунок 2 – Временная шкала расчётного сценария
 

Результаты

По результатам моделирования процесса задымления и дымоудаления в жилом помещении получена анимация распределения углекислого газа по расчётному объёму (анимация 1). Данный продукт сгорания выбран целевым для анализа, поскольку при больших концентрациях является одним из наиболее вредных и опасных для жизни человека.
Анимация 1 – Распределение массовой доли углекислого газа по расчётному объёму
 
Для проведения количественного анализа результатов моделирования в расчётном объёме выбраны 5 контрольных точек. Все контрольные точки располагаются на расстоянии 1,4 м от уровня пола жилого помещения. На рисунке 3 указано расположение и нумерация контрольных точек.
Рисунок 3 – Расположение и нумерация контрольных точек
 
На рисунке 4 приведён график изменения массовой доли углекислого газа в выбранных контрольных точках в зависимости от времени расчёта. На графике отчётливо наблюдается резкое снижение массовой доли углекислого газа в момент включения вентиляции. На конечный момент расчёта средняя по объёму помещения квартиры массовая доля углекислого газа составляет около 1,5%. 
Рисунок 4 – График изменения массовой доли углекислого газа в зависимости от времени
 
На анимации 2 показано распределение температуры смеси воздуха и продуктов сгорания по расчётному объёму в процессе моделирования.
Анимация 2 – Распределение температуры смеси воздуха и продуктов сгорания по расчётному объёму
 
На рисунке 5 приведён график изменения температуры смеси воздуха и продуктов сгорания в зависимости от времени. На конечный момент моделирования средняя температура в помещении квартиры с очагом возгорания составляет около 34 °С. 
Рисунок 5 – График изменения температуры смеси газов в зависимости от времени
 
На рисунке 6 показано распределение массовой доли углекислого газа в поперечном сечении квартирного помещения, проходящем через очаг возгорания, в момент включения приточно-вытяжной вентиляции (300 секунд расчётного времени). 
Рисунок 6 – Распределение массовой доли углекислого газа в поперечном сечении квартирного помещения, проходящем через очаг возгорания, в момент включения приточно-вытяжной вентиляции (расчётное время 300 с)
 
На рисунке 7 показано распределение температуры смеси воздуха и продуктов сгорания в поперечном сечении квартирного помещения, проходящем через очаг возгорания, в момент включения приточно-вытяжной вентиляции (300 секунд расчётного времени).
Рисунок 7 – Распределение температуры смеси воздуха и продуктов сгорания в поперечном сечении квартирного помещения, проходящем через очаг возгорания, в момент включения приточно-вытяжной вентиляции (300 секунд расчётного времени) 
 
На анимации 3 показано распределение воздуха, поступающего из приточной вентиляции с использованием линий тока, окрашенных по модулю скорости. По этой анимации видно, что поступление воздуха из приточной вентиляции в помещение с очагом возгорания минимально. Дымоудаление и охлаждение нагретого воздуха происходит за счёт забора воздуха вытяжной вентиляцией (анимация 4). Приточная вентиляция выполняет функцию компенсации удаляемого воздуха.
Анимация 3 – Распределение воздуха, поступающего из приточной вентиляции
Анимация 4 – Распределение воздуха, поступающего в вытяжную вентиляцию
 

Заключение

По итогам моделирования задымления и дымоудаления в жилом помещении осуществлён качественный и количественный анализ полученных расчётных результатов. В ходе подобного анализа могут быть получены сведения о распределении вредных продуктов сгорания в пространстве моделируемого помещения, определена концентрация продуктов сгорания в любой контрольной точке, получены распределения температуры смеси воздуха и продуктов сгорания в зависимости от расчётного времени моделируемого процесса. Помимо этого, подобное исследование позволяет определить оптимальные параметры систем дымоудаления ещё на этапе проектирования или проверить эффективность уже установленной вентиляции. В ходе моделирования может быть воспроизведён любой расчётный сценарий, например, можно выбирать любое положение источника пожара, изменять состав продуктов сгорания, подбирать режим работы вентиляции, модернизировать проектировку помещения и расположение в ней приточно-вытяжной вентиляций. Иными словами, в ходе моделирования можно быстро и качественно воспроизводить эксперименты, которые затруднительно или даже невозможно было бы осуществить в натурных условиях.
 

Список использованных источников

1.Ansys Fluent, Release 2023 R1, Help System, Fluent help, Theory Guide, 14.8 Modeling Species Transport in Multiphase Flows, ANSYS, Inc.
вернуться к списку новостей
Рассчитать стоимость онлайн
Сообщите основную информацию о вашей задаче, ответьте на несколько вопросов и мгновенно получите оценку трудоемкости актуальной для вас инженерной задачи.
Узнать цену
Связанные новости
27 сентября 2024

VII Научно-техническая конференция «Технологии обустройства нефтяных, газовых и газоконденсатных месторождений»

23-25 сентября делегация АО «ЦИФРА» приняла участие в работе VII Научно-технической конференции «Технологии обустройства нефтяных, газовых и газоконденсатных месторождений».
Новости
1 июля 2024

Сопровождение проектирования центров обработки данных

Для сокращения временных и финансовых затрат на проектирование центров обработки данных специалисты АО «ЦИФРА» применяют современные походы с привлечением математического моделирования и поддерживают разработку проекта на всех этапах – от исходной концепции до ввода в эксплуатацию.
Новости
Связанные публикации в блоге
7 октября 2024

Применение аддитивных технологий в промышленности

Аддитивные технологии, более известные как 3D-печать, активно меняют облик современной промышленности, предоставляя предприятиям новые возможности для оптимизации и ускорения производственных процессов. Так, методы аддитивного производства, основанные на принципе послойного создания объектов, предлагают компаниям решения, которые зачастую сложно реализовать с использованием традиционных производственных методов.
Блог
16 сентября 2024

Моделирование распространения звука в задачах гидро- и аэроакустики

В статье рассматриваются подходы к моделированию распространения звука в задачах гидро- и аэроакустики. Особенностью распространения звука в жидких и газообразных средах является наличие конвективных и диссипативных эффектов, что несколько усложняет компьютерное моделирование, поскольку возникает необходимость рассматривать распространение звука и динамику среды совместно.
Блог
Связанные вебинары
23 декабря 2020

Повышение эффективности процессов промышленной газоочистки с использованием численного моделирования

На вебинаре рассмотрим численное моделирование современных газоочистных установок.
Вебинары
5 мая 2020

Численное моделирование железобетонных конструкций при действии статических и экстремальных динамических нагрузок

На данном вебинаре вы сможете получить новые знания и опыт в области численного решения задач нелинейного деформирования железобетонных конструкций с использованием программных комплексов конечно-элементного анализа Ansys Mechanical и Ansys/LS-DYNA.
Вебинары
Расскажите о вашей задаче
Изменить файл
Поля, отмеченные звездочкой (*) обязательны для заполнения.
Успешно отправлено! Наш специалист свяжется с Вами в ближайшее время!