Проекты

Расчет прочности сатуратора установки для флотационной очистки сточных вод

Расчет прочности камеры насыщения азотом (сатуратора) системы флотационной очистки (флотатора) выполнен в Центре инженерно-физических расчетов и анализа по заказу международной компании KWI International. Цель расчёта – подтверждение правильности выбора сортамента и конструктивных решений для установки приготовления водо-газовой смеси, в части выполнения условий прочности обечайки и плоских днищ корпуса сатуратора при рабочих нагрузках.

Системы флотационной очистки 

Флотация – один из методов очистки сточной воды, в основе которого лежит связывание частиц химических примесей с пузырьками газа и выведение их из циркулирующей в системе воды.

Флотация сточных вод производится за счет непрерывного смешивания воды и газового потока в специальном флотационном насосе. При этом размер пузырьков подбирается в строгом соответствии с выводимыми частицами. Очистка сточных вод методом флотации считается эффективной, если в ходе очистки связь между загрязняющими частицами и пузырьками газа остается стабильной на всем протяжении процесса их выведения из системы. Наибольшее распространение на данный момент получили флотаторы, насыщающие газом весь поток воды в системе. После этого вода вместе с пузырьками воздуха и связанными с ними частицами попадает в специальную камеру, где воздух растворяется, отфильтровывая загрязняющие вещества, а вода выводится через отдельный трубопровод.

Составной частью системы флотационной очистки является сатуратор – устройство для создания газо-жидкостной смеси. Сатураторы в зависимости от поставленной задачи могут растворять различные газы; воздух, метан, азот, углекислый газ и т.д. Смесь обязательна для проведения флотационных процессов во флотаторах различных типов. Конструкция сатуратора представляет собой трубу со штуцерами входа воды и выхода газо-воздушной смеси. На входе - устройство закручивания водяного потока, на выходе - раскручивания. По длине трубы расположена специальная пластина для подачи в водяной поток мелкодисперсных пузырьков газа. Ввод газа и крепление пластины через резьбовые штуцера на обечайке.

Специальная конструкция сатураторов позволяет достигать эффективного растворения газов в воде. Осветленная вода после флотатора, подается на устройство растворения газов рециркуляционным насосом под давлением. Специально рассчитанная конструкция сатуратора позволяет достигать максимально возможного растворения газов в воде. После устройства растворения газов насыщенная воздухом (сатурированная) вода проходит через редукционный клапан, на котором происходит потеря давления и выделение из сатурированной воды огромного количества микропузырьков воздуха. После редукционного клапана сатурированная вода смешивается с очищаемой водой, поступающей на очистку во флотационную установку и насыщает ее большим количеством воздуха. Вода, насыщенная воздухом, захватывает скоагулированные загрязнения и поднимает их на поверхность.

Расчет прочности камеры сатуратора

Камера сатуратора работает под внутренним давлением и относится к четвёртой группе сосудов по ГОСТ Р 52630 – 2012. Сосуды и аппараты стальные.

Задачами расчёта прочности камеры сатуратора являются:

  • определение рабочих нагрузок;
  • построение модели камеры для последующих расчетов методом конечных элементов;
  • определение напряжённо-деформированного состояния камеры при рабочих нагрузках;
  • проверка условий прочности в элементах и деталях камеры под действием рабочих нагрузок.

Для выполнения расчётов прочности камеры насыщения использовался пакет программ ANSYS. Подготовка геометрической модели произведена при помощи продукта ANSYS SpaceClaim. Построение конечно-элементной сетки выполнено при помощи ANSYS Meshing. Постановка задачи, выполнение расчёта и обработка результатов производились при помощи продукта ANSYS Mechanical.

сатуратор

Расчёт проведён в предположении следующих нагрузок, действующих на камеру: внутреннее давление на стенки камеры и усилие затяжки болтов свободных фланцев. Для определения величины усилия затяжки болтовых соединений в фланцах, обеспечивающего герметичность соединения, была использована методика ГОСТ Р 52857.4–2007. Сосуды и аппараты. Нормы и методы расчета на прочность. Расчет на прочность и герметичность фланцевых соединений. Механические свойства материалов болтов приняты по ГОСТ Р 52627-2006. Болты, винты и шпильки. Механические свойства и методы испытаний.

Оценка прочности деталей была произведена по четвертой теории прочности (теории максимальной энергии формоизменения Мизеса), а крепёжных элементов – по максимальному значению растягивающих напряжений и максимальному абсолютному значению суммы растягивающих и изгибных напряжений. В результате выполнения расчета определено напряжённо-деформированное состояние деталей и элементов камеры при рабочих нагрузках и проверено выполнение критериев прочности.

В работе также выполнена оценка усилий затяжки болтового соединения, обеспечивающего герметичность фланцевого соединения. Поскольку при сборке соединения возможно возникновение отличного от указанного значения усилия, а превышение усилий затяжки может привести к нарушению условий прочности тех или иных деталей камеры, то в расчёте были определены максимальные усилия затяжки болтового соединения, при которых нарушения условий прочности не происходит.

Ресурсы

Связанные новости
19 апреля 2022 года состоялось заседание секции №6 «Прочность и надежность строительных конструкций зданий и сооружений» Экспертного совета по аттестации программ для ЭВМ при Научно-техническом центре по ядерной и радиационной безопасности (ФБУ «НТЦ ЯРБ») Ростехнадзора.
АО «ЦИФРА» приняла участие в треке «Математическое моделирование» в рамках образовательного форума "Phygital universe", который проходил в Санкт-Петербургском политехническом университете Петра Великого. 27 апреля руководитель инженерной группы АО «ЦИФРА» Юрий Лавров, а также инженеры Рубцов Иван и Васильева Дарья выступили в Высшей школе теоретической механики с презентацией проектов из инженерной практики. 29 апреля Юрий и Дарья оценивали навыки математического моделирования и инженерного мышления участников форума при решении практического кейса от АО «ЦИФРА». По результатам защиты кейсов выбрано 5 победителей, которые получат дополнительные 10 баллов при поступлении в магистратуру в СПбПУ.
Связанные публикации в блоге
Бронеодеждой или БО согласно ГОСТ 34286-2017 называют средства индивидуальной броневой защиты, выполненные в виде пальто, накидок, плащей, костюмов, курток, брюк, комбинезонов, жилетов и т.п., предназначенные для периодического ношения с целью защиты туловища и (или) конечностей человека (за исключением стоп ног и кистей рук) от воздействия холодного оружия и огнестрельного стрелкового оружия, а также поражения осколками (далее - средства поражения). БО применяется тогда, когда может потребоваться защита жизни и здоровья человека. Она классифицируется и для нее проводятся испытания согласно назначенным классам.
Основной эксплуатационной характеристикой судна, определяющей возможности работы судна в ледовых условиях, является его ледовый класс. В прошлом каждое классификационное общество имело свою уникальную систему классификации судов ледового плавания, и, как следствие – свои нормативные требования к таким судам, однако в начале 2000-х годов Международной ассоциацией классификационных обществ (МАКО) была проведена работа по унификации этих требований, результатом которой стало введение двух систем классификации судов ледового плавания: системы балтийских ледовых классов (для плавания в Балтийском море и схожих по ледовым условиям морях) и системы полярных классов (для плавания в полярных водах), при этом требования каждого классификационного общества-члена МАКО остались в силе. Со вступлением в силу в 2017 году Международного кодекса для судов, эксплуатирующихся в полярных водах (Полярного кодекса) особенно актуальным стал вопрос присвоения судну полярного класса. Несмотря на то, что МАКО была определена приблизительная эквивалентность ледовых классов различных систем классификации (см. рис. 1), на практике для получения полярного класса необходимо подтверждение соответствия судна требованиям IACS UR I – requirements concerning Polar Class. Эти требования разделяются на корпус и механические установки. Рассмотрим пример выполнения анализа соответствия механических установок судна полярному классу.
Связанные вебинары
В рамках Договора о научно-техническом сотрудничестве между АО «ЦНИИМФ» и АО «ЦИФРА» на данном вебинаре заведующий отделом конструктивной надежности и защиты судов от коррозии АО «ЦНИИМФ» Алексей Петров расскажет об имеющемся опыте и перспективах использования компьютерного моделирования для решения различных задач, связанных с ремонтом или модернизацией судов в эксплуатации.
АО "ЦИФРА" объявляет о проведении серии лекций-вебинаров от ведущих приглашенных экспертов в области численного моделирования. В ходе первого вебинара данной серии будут рассмотрены вопросы прочностного анализа «легких» (lightweight) композитных конструкций при динамическом нагружении с использованием явных решателей (сеточного и бессеточного) ПО LS-DYNA.

Закажите расчет

Команде профессионалов
Изменить файл
Поля, отмеченные звездочкой (*) обязательны для заполнения.