В работе выполнен расчет прочности полусферы из оптического стекла К8 под действием внешнего давления, в рамках моделирования гидростатических испытаний изделия.
Вебинар: Научно-техническое сопровождение проектирования особо опасных и технически сложных промышленных объектов
Приглашаем на открытый вебинар, посвящённый актуальным вопросам проведения научно-технического сопровождения проектирования (НТС).
Объект исследования
Рассмотрена задача о воздействии равномерно распределенного статического внешнего давления на полусферическое стекло, установленное на абсолютно твёрдое, жёстко закреплённое основание, с возможностью проскальзывания стекла по нему.
Исходные заготовки рассмотренной в настоящей работе полусферы представляют собой цилиндры, выполненные из оптического стекла марки К8. Обработка деталей произведена традиционными для оптической промышленности способами:
- обработка алмазным инструментом при формообразовании – круглая шлифовка и сферофрезерование;
- шлифовка свободным абразивом;
- полировка всех поверхностей детали.
Прочность стекла
Теоретическая разрывная прочность идеального стекла, по разным оценкам, в 20-30 раз больше прочности конструкционных сталей. Основной же недостаток реальных стёкол – хрупкость – обусловлен наличием поверхностных и внутренних микродефектов, становящихся центрами, от которых начинается разрушение стеклянной детали. Увеличить прочность изделия из стекла можно либо сглаживая эти дефекты, либо заставляя поверхность стекла работать только на сжатие при любых нагрузках на деталь. Сглаживание поверхностных дефектов достигается полировкой.
Одним из способов прогнозирования возможного растрескивания стекла под действием растягивающей механической нагрузки является расчетный анализ его напряженно-деформированного состояния и сравнение возникающих в стекле механических напряжений с критическими значениями.
В качестве программного средства для выполнения расчетов использована программная система конечно-элементного анализа ANSYS Mechanical, в которой проведена подготовка конечно-элементной модели, а также выполнено решение поставленных задач.
Анализ испытаний на прочность
У стёкол предел прочности на сжатие составляет от 500 до 2000 МПа. Предел прочности на растяжение у стекла значительно меньше, и поэтому предел прочности стекла при изгибе считают равным пределом прочности при растяжении. Данная прочность колеблется в пределах от 35 до 100 МПа. Путём закаливания стекла удается повысить его прочность в 3-4 раза. Также значительно повышает прочность стёкол обработка их поверхности химическими реагентами с целью удаления дефектов поверхности (мельчайших трещин, царапин и т. д.).
В качестве исходных данных для расчета полусферы из стекла использованы результаты эксперимента по симметричному (кольцевому) изгибу круглых образцов плоского полированного стекла марки К8. По результатам эксперимента для 40 образцов с толщинами от 2,2 до 2,5 мм прочность на изгиб варьируется в пределах от 50 до 220 МПа. По экспериментальным данным построена гистограмма распределения прочности образцов на изгиб.
Экспериментальная гистограмма распределения частных значений прочности полированного стекла К8
Вид гистограммы близок к кривой распределения частных значений прочности полированного стекла К8, приводимой в литературе [1]. Отклонения гистограммы от эталонного вида можно объяснить недостаточным количеством экспериментальных данных в выборке.
Кривая распределения прочности полированного стекла К8 [1]
По гистограмме распределения прочности построена функция распределения вероятности, представляющая собой вероятность отказа (разрушения стекла) в зависимости от возникающего в нем максимального напряжения под действием механической нагрузки.
Функция распределения вероятности отказа стекла
Выбор критерия прочности стекла
В области температур ниже температуры плавления стекло разрушается от механического воздействия без заметной пластической деформации и, таким образом, относится к идеально хрупким материалам. Для определения критерия разрушения использована первая теория прочности [2]. Согласно ей, разрушение материала при сложном напряженном состоянии, как и при простом растяжении-сжатии, наступает от действия наибольшего главного нормального напряжения (оно же наибольшее растягивающее), при этом действие двух других нормальных напряжений не учитывается.
Первая теория прочности подтверждается экспериментами для хрупких материалов, к которым можно отнести стекло К8 [1]. В качестве предельного напряжения может быть взято минимальное значение прочности на изгиб, полученное в эксперименте – 50 МПа. При превышении в стекле предела прочности необходимо проводить оценку вероятности разрушения, исходя из экспериментальных данных оценки прочности образцов.
Напряженно-деформированное состояние стеклянной полусферы
Рассмотрена задача о воздействии равномерно распределенного статического давления на полусферическое стекло, установленное на абсолютно твёрдое, жёстко закреплённое основание с возможностью проскальзывания по нему.
В качестве внешнего воздействия приложено внешнее давление 50 МПа, равномерно распределенное по внешней поверхности полусферического стекла.
Воздействие внешнего давления на стеклянную полусферу
На рисунке представлено полученное поле радиальных перемещений сферического стекла.
Поле радиальных перемещений
Значение наибольшего радиального перемещения на опорной поверхности составляет 0.05 мм.
На рисунке представлено полученное поле наибольших растягивающих напряжений в сферическом стекле.
Наибольшие растягивающие напряжения при такой постановке наблюдаются на внутреннем скруглении опорной поверхности сферического стекла. Значение наибольшего растягивающего напряжения 70 МПа, что превышает минимальное значение прочности на изгиб, полученное в эксперименте. По построенной на основе экспериментальных данных функции распределения вероятности отказа стекла, при данном уровне максимальных напряжений вероятность разрушения стекла составляет 15%.
Выводы
- Прочность стекла как хрупкого материала может быть оценена по первой теории прочности – критерию максимальных растягивающих напряжений. В качестве предельного напряжения может быть взято значение прочности на изгиб, полученное в эксперименте – 50 МПа.
- При превышении в стекле предела прочности 50 МПа необходимо проводить оценку вероятности разрушения, исходя из экспериментальных данных оценки прочности образцов и значения напряжений, возникающих в рассматриваемой конфигурации сборки.
- Вероятность разрушения рассмотренной стеклянной полусферы под действием внешнего давления составляет 15%.
Список источников
- Иванов А.В. Прочность оптических материалов – Л.: Машиностроение. Ленингр. Отд-ие, 1989. – 144 с.: ил., стр. 61.
- Дарков А.В., Шапиро Г.С. Сопротивление материалов – М.: Высшая школа, 1975. - 654 с.: стр. 355.