Проекты

Моделирование теплового состояния пофазно-экранированного токопровода с учётом инсоляции

Используя методы численного моделирования, специалисты АО «ЦИФРА» провели тепловой расчёт пофазно-экранированного токопровода с учётом влияния инсоляции (воздействие прямых солнечных лучей на поверхность).

Сфера использования токопроводов очень велика: они могут применяться на тепловых электростанциях, крупных блочных электростанциях, атомных электростанциях, гидроэлектростанциях, гидроаккумулирующих электростанциях и т. д. Токопровод предназначен для передачи и распределения электрической энергии, как правило, между блоками одной электроустановки. Пример токопроводов представлен на рисунке 1.

Рисунок 1 – Пример токопроводов АЭС

Во время эксплуатации токопровода возникает риск его перегрева, так как вся энергия потерь при прохождении тока через токопровод переходит в тепло. При разработке и проектировании подобного рода систем важно оценить максимальную температуру, достигаемую на поверхности оборудования во время его работы, в том числе при воздействии инсоляции.

Процесс проведения теплового расчёта условно можно разделить на несколько этапов, таких как разработка геометрической трёхмерной CAD модели, построение сеточной модели, настройка численной модели и граничных условий (ГУ), непосредственно проведение расчёта и анализ расчётных результатов.

Геометрическая модель

Разработанная CAD-модель токопровода включает в себя кожухи, шины, шинные компенсаторы, проходной изолятор и систему принудительного охлаждения (рисунок 2).

Рисунок 2 – Геометрическая трёхмерная CAD-модель токопровода

Кожухи защищают токоведущие шины от влияния окружающей среды, поэтому основное воздействие инсоляции приходится именно на них. Шинные компенсаторы позволяют перемешивать внутренний и внешний поток и компенсировать деформации, обусловленные температурными перепадами.

Система принудительного охлаждения представляет собой в данном случае три воздуховода, предназначенные для подачи воздуха в систему, а также воздуховод для отвода нагретого воздуха из системы. 

Сеточная модель

Для подготовленной геометрической модели в программном модуле Fluent Meshing разработана сеточная модель конечных объёмов. Количество элементов расчётной сетки составляет 1,7 млн. ячеек.  Фрагмент сеточной модели представлен на рисунке 3. 

Рисунок 3 – Фрагмент сеточной модели вблизи воздуховодов для подачи воздуха в систему

Для уточнённого моделирования течений вблизи твёрдых стенок, вдоль них построено три призматических слоя ячеек (рисунок 4).

Рисунок 4 – Призматические слои в сечении сеточной модели

Постановка задачи

Массовый расход воздуха, подаваемый в систему, составляет 12 кг/с, температура воздуха 30 °С. Для расчёта турбулентного конвективного течения потока воздуха, возникающего в процессе вынужденной конвекции, применяется метод интегрирования уравнений Навье—Стокса, осреднённых по Рейнольдсу (RANS модель), предполагающих нахождение решения в виде полей параметров течения, осреднённых по времени. Для замыкания системы уравнений Навье—Стокса, осреднённых по Рейнольдсу, выбрана модель турбулентности  k—ω Shear Stress Transport (k—ω SST). Данная модель предполагает изотропность турбулентности и моделирование потока в пристеночном слое, не зависящее от характерного размера в первом пристеночном слое ячеек. Давление на выходе из системы принимается равным атмосферному.

На всех твёрдых стенках модели токопровода используется ГУ гидродинамически гладкой стенки, что соответствует равенству нулю вектора скорости и градиентов всех параметров течения.

В ходе моделирования используется модель излучения Surface to Surface (S2S), которая предназначена для расчёта теплопередачи от поверхности к поверхности через оптически тонкую среду. Для не запылённого воздуха значение оптической толщины во много раз меньше 1, что даёт основание считать рассматриваемую среду оптически прозрачной.

На внешних стенках кожухов и воздуховодов задаётся тепловое ГУ третьего рода, предполагающее задание температуры внешней текучей среды и закона теплообмена между поверхностью твёрдого тела и окружающей средой. Это отражает в первом приближении сложный лучистый и конвективный теплообмен, в котором доля лучистого потока теплоты является преобладающей. Температура внешней среды задаётся равной 30 °С. Значение коэффициента внешней теплоотдачи (для неподвижного воздуха) выбрано равным 5 Вт/м^2∙К из консервативных соображений. 

На стенках шин, шинных компенсаторов, проходного изолятора, а также внутренних стенках кожухов и воздуховодов в модели задаётся ГУ сопряжённой теплопередачи. Помимо прочего для шин и кожухов задаются значения удельных потерь энергии.

Значения коэффициентов излучения для всех внутренних стенок модели составляет 0,9, для внешних — 0,11.

Для оценки влияния инсоляции на поля температур произведено последовательно два расчёта: с учётом инсоляции и без учёта инсоляции. Остальные ГУ в обоих расчётах при этом не изменялись.

Решение задач осуществлялось в стационарной постановке, для выхода на режим установления потребовалось около 1000 итераций для каждого расчётного случая.

В расчёте с учётом инсоляции в качестве расчётного направления солнечного потока выбрано направление перпендикулярное к горизонтальной плоскости, в которой расположен токопровод. В расчёте значение потока солнечного излучения принималось равным 600 Вт/м^2. Солнечный поток воздействует на все поверхности токопровода, не находящиеся в производственном помещении (рисунок 5). 

Рисунок 5 – Распределение потока солнечного излучения по поверхности токопровода

Результаты расчётов

В результате проведения расчёта с учётом инсоляции получено распределение температуры по поверхностям кожухов и шин. Наибольшее влияние солнечного потока приходится на верхнюю поверхность кожухов, где отчётливо прослеживаются области достижения максимальной температуры, равной 73 °С. Минимальные температуры наблюдаются на поверхности воздуховодов, находящихся в производственном помещении.

Рисунок 6 – Распределение температуры по поверхности кожухов с учётом инсоляции

На рисунке 7 представлено соответствующее распределение температуры по поверхности шин. Максимальная температура составляет 95 °С.

Рисунок 7 – Распределение температуры по поверхности шин с учётом инсоляции

На рисунке 8 показано распределение температуры по поверхности кожухов без учёта инсоляции. Максимальная температура составляет 56 °С. Таким образом, учёт в расчёте инсоляции приводит к увеличению максимальной температуры на поверхности кожухов на 17 °С.

Рисунок 8 – Распределение температуры по поверхности кожуха без учёта инсоляции

Учёт инсоляции приводит и к увеличению температуры на поверхности шин. Максимальная температура на поверхности шин в расчёте без учёта инсоляции составляет 83 °С, что на 12 °С меньше, чем в расчёте с учётом инсоляции (рисунок 9).

Рисунок 9 – Распределение температуры по поверхности шины без учёта инсоляции

Заключение

Анализ результатов тепловых расчётов показывает, что инсоляция оказывает существенное влияние на распределение температуры по поверхностям конструктивных элементов токопровода, в том числе на максимальное значение температуры, особенно на поверхностях кожухов. Поэтому пренебрегать учётом инсоляции в подобных расчётах не рекомендуется.

Подобное исследование позволяет оценить влияние инсоляции на тепловое состояние объекта ещё на стадии проектирования и подобрать систему охлаждения, способную поддерживать оборудование в работоспособном состоянии, в частности при эксплуатации в экстремально жарких условиях. 

 

Связанные новости
В марте 2022 года эксперт по судостроению АО «ЦИФРА» Алексей Петров принял участие в натурных испытаниях буксировки судна во льдах по Северному морскому пути. Буксировка выполнялась универсальным атомным ледоколом «Сибирь» проекта 22220, введенным в эксплуатацию в декабре 2021 года.
Отличная новость: мы открываем весенний набор в программу стажировки молодых инженеров. Стать участниками стажировки смогут студенты технических специальностей, обучающиеся в вузах Санкт-Петербурга: СПбПУ Петра Великого, БГТУ «Военмех» им. Д. Ф. Устинова, СПбГУ, СПбГМТУ, Университет ИТМО. На стажировку принимаются студенты старших курсов: от четвертого и выше. Дата окончания приема заявок — 20 мая 2022 года.
Связанные публикации в блоге
Основной эксплуатационной характеристикой судна, определяющей возможности работы судна в ледовых условиях, является его ледовый класс. В прошлом каждое классификационное общество имело свою уникальную систему классификации судов ледового плавания, и, как следствие – свои нормативные требования к таким судам, однако в начале 2000-х годов Международной ассоциацией классификационных обществ (МАКО) была проведена работа по унификации этих требований, результатом которой стало введение двух систем классификации судов ледового плавания: системы балтийских ледовых классов (для плавания в Балтийском море и схожих по ледовым условиям морях) и системы полярных классов (для плавания в полярных водах), при этом требования каждого классификационного общества-члена МАКО остались в силе. Со вступлением в силу в 2017 году Международного кодекса для судов, эксплуатирующихся в полярных водах (Полярного кодекса) особенно актуальным стал вопрос присвоения судну полярного класса. Несмотря на то, что МАКО была определена приблизительная эквивалентность ледовых классов различных систем классификации (см. рис. 1), на практике для получения полярного класса необходимо подтверждение соответствия судна требованиям IACS UR I – requirements concerning Polar Class. Эти требования разделяются на корпус и механические установки. Рассмотрим пример выполнения анализа соответствия механических установок судна полярному классу.
Современная архитектура охватывает множество различных стилей и направлений. Одной из наиболее распространённых характеристик современной архитектуры является отказ от прямых и резких линий в пользу более изогнутых и плавных, а также наличие открытых жилых пространств.
Связанные вебинары
АО "ЦИФРА" объявляет о проведении серии лекций-вебинаров от ведущих приглашенных экспертов в области численного моделирования. В ходе первого вебинара данной серии будут рассмотрены вопросы прочностного анализа «легких» (lightweight) композитных конструкций при динамическом нагружении с использованием явных решателей (сеточного и бессеточного) ПО LS-DYNA.

Закажите расчет

Команде профессионалов
Изменить файл
Поля, отмеченные звездочкой (*) обязательны для заполнения.