8 812 123 45 67
Сопоставление данных расчетов МКЭ и экспериментов

Подтверждение данных расчетов методом конечных элементов с помощью натурных экспериментов, когда это возможно, является исчерпывающим средством валидации модели. Рассмотрим в статье несколько принципов, соблюдение которых позволит эффективно выполнять процедуру сравнения данных расчетов и экспериментов.

Сложности, которые могут возникать у исследователя при валидации конечно-элементного расчета на экспериментальные данные, могут играть существенную роль при подтверждении корректности результатов расчетов на прочность. В статье приведено несколько ключевых советов, которые позволят избежать значительных трудностей при планировании валидации расчетной модели:

1. Располагайте измерительные датчики в корректных зонах

(a) Акселерометры должны располагаться в местах, где амплитуда перемещений высока, но учтите, что собственный вес и конструкция акселерометров может повлиять на массу и жесткость вибрирующего элемента конструкции. Если размещение датчика очевидно имеет влияние на массово-жесткостные характеристики установки, то следует включить датчики и в расчетную конечно-элементную модель в виде комбинации сосредоточенной массы и пружины.

(b) Датчики деформаций – тензометры – должны располагаться в местах больших напряжений, но вдалеке от зон высоких градиентов и сингулярности напряжений. Изучите картину изолиний напряжений в конечно-элементной модели перед проведением теста и выберите зону высоких напряжений значительного размера для размещения там тензометра. Если пренебречь данным советом и расположить датчик деформаций в зоне высокого градиента напряжений, то незначительное изменение позиций датчика приведет к существенным расхождениям результатов расчета и измерений.

2. Убедитесь, что тестовая нагрузка достаточно велика

При расчете МКЭ величина тестовой нагрузки играет роль только в задачах с существенной нелинейностью. Для тестов и измерений зачастую используется единичная нагрузка и линейная постановка задачи. Что касается экспериментальной установки, то величина нагрузки может существенно влиять на точность измерений. Выбирайте величину тестовой нагрузки исходя из параметров экспериментальной установки и обеспечивайте максимальную точность измерений.

3. Точно описывайте граничные условия

Одним из ключевых основных факторов, влияющих на точность совпадения решения МКЭ и экспериментальных данных, является корректность описания в конечно-элементной модели граничных условий. Например, выбор в качестве граничных условий фиксированной или скользящей заделки является допущением исследователя. В подобной ситуации рекомендуется провести анализ чувствительности решения к типу граничных условий. При необходимости можно усложнить описание граничных условий для их более точного приведения к условиям эксперимента – выбор упругого основания, линейных или нелинейных пружин.

4. Корректно извлекайте данные расчетов для сравнения с экспериментом

Наиболее часто проводится сравнение поверхностных деформаций в заданном направлении, полученных с помощью тензометра. При использовании программной системы ANSYS пользователь может использовать поверх твердотельных оболочечные элементы и с их помощью извлечь из модели значения деформаций в точно заданном направлении, что обеспечивается при помощи локальных систем координат, ориентированных так же, как и датчик. Подобные поверхностные элементы могут быть размещены в зоне расположения каждого тензометра и при этом не должны добавлять жесткость в модель.

5. Определитесь заранее с допустимой погрешностью

Допустимая погрешность при сравнении результатов расчетов методом конечных элементов и данных натурных экспериментов может сильно различаться в каждом конкретном случае. Для линейных статических задач прочности металлических конструкций с малыми перемещениями можно ожидать точность до 1%. Однако, в случае сложных нелинейных процессов и комплексных систем, расхождение в 20% может быть лучшим ожидаемым результатом.

Крайне важно применить инженерный опыт и суждение. Иногда получить качественную картину и провести анализ чувствительности решения может быть гораздо ценнее для понимания физики процесса, чем пытаться достичь высокой степени совпадения для одной конкретной постановки задачи.

Если вы ожидаете неточность каких-то условий при проведении эксперимента, то по возможности проводите серию 5-10 экспериментов и анализируйте разброс и распределение результатов.

 

вернуться к списку новостей
Рассчитать стоимость онлайн
Сообщите основную информацию о вашей задаче, ответьте на несколько вопросов и мгновенно получите оценку трудоемкости актуальной для вас инженерной задачи.
Узнать цену
Связанные новости
18 января 2023

Оценка прочности строительных конструкций АЭС «Эль-Дабаа» при падении тяжелого коммерческого самолета

Специалисты АО «ЦИФРА» выполнили комплекс работ по численному моделированию и оценке прочности строительных конструкций АЭС «Эль-Дабаа» при падении тяжелого коммерческого самолета по заказу АО «Атомэнергопроект».
Новости
17 октября 2022

Эксперты АО «ЦИФРА» выступили на нефтегазовой конференции АО «ТомскНИПИнефть»

Специалисты АО «ЦИФРА» приняли участие в V научно-технической конференции «Технологии обустройства нефтяных, газовых и газоконденсатных месторождений», организованной АО «ТомскНИПИнефть». Событие состоялось 20-21 сентября 2022 года и стало местом встречи учёных и практиков, проектировщиков и представителей служб эксплуатации – специалистов, представляющих наиболее актуальные разработки в сфере обустройства, подготовки нефти и газа.
Новости
Связанные публикации в блоге
15 июня 2022

Расчет прочности внешнего корпуса насоса по ASME BPVC VIII

На сегодняшний день крупнейшими производителями сосудов и аппаратов, работающих под давлением, является Китай, Германия, Канада, Великобритания, Россия и другие. Оборудование, изготавливаемое этими странами, поставляется и применяется по всему миру. При этом в каждой эксплуатирующей стране разработана своя нормативно-техническая база. Проблема заключается в том, что все нормы весьма разнородны по своему статусу и не образуют единой системы.
Блог
21 апреля 2022

Ткань против пули. Математическое моделирование испытаний бронеткани согласно ГОСТ 34286-2017

Бронеодеждой или БО согласно ГОСТ 34286-2017 называют средства индивидуальной броневой защиты, выполненные в виде пальто, накидок, плащей, костюмов, курток, брюк, комбинезонов, жилетов и т.п., предназначенные для периодического ношения с целью защиты туловища и (или) конечностей человека (за исключением стоп ног и кистей рук) от воздействия холодного оружия и огнестрельного стрелкового оружия, а также поражения осколками (далее - средства поражения). БО применяется тогда, когда может потребоваться защита жизни и здоровья человека. Она классифицируется и для нее проводятся испытания согласно назначенным классам.
Блог
Связанные вебинары
23 июля 2020

Применение компьютерного моделирования при ремонте и модернизации судов

В рамках Договора о научно-техническом сотрудничестве между АО «ЦНИИМФ» и АО «ЦИФРА» на данном вебинаре заведующий отделом конструктивной надежности и защиты судов от коррозии АО «ЦНИИМФ» Алексей Петров расскажет об имеющемся опыте и перспективах использования компьютерного моделирования для решения различных задач, связанных с ремонтом или модернизацией судов в эксплуатации.
Вебинары
3 июня 2020

Моделирование и расчёт композитных конструкций при динамическом нагружении

АО "ЦИФРА" объявляет о проведении серии лекций-вебинаров от ведущих приглашенных экспертов в области численного моделирования. В ходе первого вебинара данной серии будут рассмотрены вопросы прочностного анализа «легких» (lightweight) композитных конструкций при динамическом нагружении с использованием явных решателей (сеточного и бессеточного) ПО LS-DYNA.
Вебинары
Сделайте заказ
Изменить файл
Поля, отмеченные звездочкой (*) обязательны для заполнения.
Успешно отправлено! Наш специалист свяжется с Вами в ближайшее время!