Блог

Потеря разрешающей способности оптических элементов в напряжённом состоянии

Идеальная оптическая система существенно отличается от реальной, так как в реальности на оптическую систему воздействуют тепловые и механические нагрузки, оптические элементы взаимодействуют с конструктивным окружением, вследствие чего приходится сталкиваться с множеством проблем и факторов, которые требуется учитывать и корректировать, чтобы результат проектирования оптического элемента оказался качественным. Учесть большое количество факторов, избежать нежелательных поломок и сэкономить ресурсы за счёт уменьшения натурных испытаний возможно с применением инструментов предсказательного моделирования.

Специалистами АО «ЦИФРА» разработана методика определения деформации рабочей поверхности оптического элемента путём математического моделирования. В сотрудничестве с АО «ЛОМО» проведён эксперимент по нагреву линзы, изготовленной из оптического стекла марки К8 и определению деформации её рабочей поверхности. Для отработки методики для данной линзы поставлена задача, моделирующая условия эксперимента и проведено сравнение результатов эксперимента с результатами моделирования.

Объектом исследования является оптический элемент типа «линза» диаметром 160 мм с толщиной 14,68 мм, представленный на рисунке 1.

Рисунок 1 – объект исследования

Методика определения деформации рабочей поверхности

При воздействии любой нагрузки на оптический объект происходит не столько перемещение самого объекта, сколько искривление (деформация) его рабочих поверхностей, что в свою очередь напрямую влияет на качество получаемого изображения.

Методика заключается в определении среднеквадратичного отклонения (далее СКО) от поля деформации рабочей поверхности оптического элемента. Полученное значение используется оптиками для определения потери качества (разрешения) получаемой картинки.

В рамках первого шага необходимо:

  • определить угловые перемещения оптического элемента как единого жёсткого целого вокруг осей перпендикулярных оптической оси;
  • определить линейное перемещение линзы как единого жёсткого целого вдоль оптической оси.

Определение поля деформации рабочей поверхности оптического элемента осуществляется путём исключения линейных и угловых компонентов перемещений из поля перемещений вдоль оптической оси.

В рамках второго шага необходимо:

  • осуществить перенос данных по полям деформаций поверхности оптического элемента в ПО Excel с последующим расчётом СКО. Ниже приведена формула, по которой определяется СКО.

(1)

где – результат измерения под номером I;

n - число измерений;

- среднее арифметическое значение результатов n измерений.

Эксперимент

Эксперимент проведён при температуре окружающей среды 24 °С. Длительность эксперимента составила 7 минут 44 секунды. Нагрев линзы производился в течение 44 секунд, оставшиеся 7 минут линза остывала.

На рисунке 2 представлена экспериментальная установка, включающая в себя интерферометр, расширитель, источник мощности и сам объект исследования. 

Рисунок 2 – Экспериментальная установка

На рисунке 3 более детально показан объект исследования в условиях эксперимента: пленочный нагреватель, при помощи которого произведен нагрев линзы; закрепление типа “плавающий патрон”, в котором очень точно регулируется положение опорных стоек, что позволяет снять с линзы более чёткую интерференционную картину и сам объект исследования – линза.

Рисунок 3 – Экспериментальная установка

Результаты эксперимента представлены в виде интерферометрических изображений, представленных на рисунках ниже, и автоматически рассчитанным СКО, представленным в таблице:

Рисунок 4 – Интерферометрическая картина на 15 секунде остывания

Рисунок 5 – Интерферометрическая картина на 120 секунде остывания

Рисунок 6 – Интерферометрическая картина на 420 секунде остывания

СКО по рабочей поверхности рассчитывается автоматически программным обеспечением интерферометра и составляет:

Таблица 1 – Результаты эксперимента

Время, сек СКО, мкм
15 0,235
120 0,123
420 0,077

 

Моделирование эксперимента

В качестве тепловой нагрузки для данной задачи используется тепловой поток, действующий на торцевой поверхности линзы, а теплообмен с окружающей средой определяется естественной конвекцией со всех открытых неизолированных поверхностей линзы. На рисунке 7 приведены граничные условия (далее ГУ) и постановка задачи.

Рисунок 7 – ГУ и постановка задачи

Значения коэффициентов конвекции рассчитаны по общепринятым критериальным уравнениям. Ниже приведён график зависимости значений коэффициента конвекции от разности температур между поверхностью оптического элемента и окружающей средой (рисунок 8).

Рисунок 8 – Зависимость коэффициента конвекции от разности температур между поверхностью оптического элемента и окружающей средой

В качестве граничного условия закрепления для оптического элемента используется специальное граничное условие «слабые пружины», которое позволяет реализовать мягкое закрепление оптического элемента в пространстве. Это необходимо для исключения вероятности получения некорректного напряжённо-деформированного состояния оптического элемента в следствии не реалистичного закрепления, которое обязательно повлияет на деформацию рабочей поверхности линзы.

Сравнение результатов математического моделирования и эксперимента

На рисунке 9 представлено типовое распределение поля деформации рабочей поверхности линзы.

Рисунок 9 – Типовое распределение поля деформации рабочей поверхности линзы, мкм

Сравнение результатов эксперимента и расчётов приведено в таблице 2 ниже:

Таблица 2 – Сравнение результатов эксперимента и моделирования

Время, сек СКО, мкм
(эксперимент)
СКО, мкм
(моделирование)
Погрешность
15 0,235 0,203 12%
120 0,123 0,123 11%
420 0,077 0,054 29%

 

Заключение

В результате эксперимента установлено, что максимальная температура на рабочей поверхности линзы и её деформация возникают на 15 секунде остывания, локализуются на кромке линзы и равны, соответственно, 31,6 °С и 0,640 мкм. Для данной временной точки расхождение результатов моделирования и эксперимента составляет 13 %. Наибольшее расхождение результата математического моделирования и результата эксперимента соответствует 420 секунде остывания линзы и составляет 29 %.

В результате проведённой работы по отработке разработанной методики установлено, что применение метода конечных элементов является реальным и достаточно эффективным инструментом для определения деформации рабочих поверхностей оптических элементов. При сравнении результатов математического моделирования с результатами натурного испытания установлено, что методика определения деформации рабочей поверхности оптического показывает себя эффективнее при большем градиенте температур между окружающей средой и самим оптическим элементом.

 

Связанные новости
22 декабря 2021 г. инженер по динамике и прочности АО «ЦИФРА» Дмитриев Андрей Николаевич принял участие в ежегодной конференции по строительной механике корабля (1), посвященной 155-летию Научно-технического общества судостроителей имени академика А.Н. Крылова. Совместно с ведущим инженером АО «ЦНИИМФ» Морозовой Елизаветой Андреевной они сделали доклад на тему «Оценка прочности и трещиностойкости железобетонного судна-накопителя нефтепродуктов с использованием численного моделирования».
Связанные публикации в блоге
Архитекторы, инженеры и другие специалисты строительной отрасли сталкиваются с растущим на них давлением, по вопросам соответствия стандартамэнергоэффективности и понижения уровня выбросов углекислого газа при сохранении затрат. Значительное ускорение процесса проектирования зданий при наименьших затратах наилучшим образом достигается за счёт использования новых технологий. Появившийся класс инструментов на базе численного моделирования, моделирование зданий и моделирование физических процессов достигли новых высот скорости и точности, совершенствуя процесс проектирования зданий и другие рабочие процессы с помощью новых возможностей. Численное моделирование открывает мир моделирования для фирм любого размера, работающих над проектами любого масштаба.
Ограждающие конструкции зданий и сооружений проходят проверку на звукоизолирующую способность. Соответствие бетонных/железобетонных перекрытий нормам по звукоизоляции оценивается путем проведения натурных или лабораторных испытаний на воздействие воздушного и ударного шума
Связанные вебинары
В рамках Договора о научно-техническом сотрудничестве между АО «ЦНИИМФ» и АО «ЦИФРА» на данном вебинаре заведующий отделом конструктивной надежности и защиты судов от коррозии АО «ЦНИИМФ» Алексей Петров расскажет об имеющемся опыте и перспективах использования компьютерного моделирования для решения различных задач, связанных с ремонтом или модернизацией судов в эксплуатации.
АО "ЦИФРА" объявляет о проведении серии лекций-вебинаров от ведущих приглашенных экспертов в области численного моделирования. В ходе первого вебинара данной серии будут рассмотрены вопросы прочностного анализа «легких» (lightweight) композитных конструкций при динамическом нагружении с использованием явных решателей (сеточного и бессеточного) ПО LS-DYNA.

Закажите расчет

Команде профессионалов
Изменить файл
Поля, отмеченные звездочкой (*) обязательны для заполнения.