8 812 123 45 67
Динамика троса палубного аэрофинишера

В статье описывается разработка математической и численной (конечно-элементной) моделей палубного аэрофинишера "Светлана-2", с высокой степенью адекватности описывающих его динамическое поведение при посадке ЛА. Разработанная модель позволяет проводить многовариантные исследования, с целью изучения влияния параметров посадки на характеристики торможения и численное моделирование работы аэрофинишера в нештатной ситуации и оценку возможности повреждения и обрыва троса.

Вебинар: Оценка прочности и устойчивости металлических конструкций зданий и сооружений по СП 16.13330.2017 с учетом назначения и условий работы

На этом вебинаре рассмотрим основные особенности расчетов прочности металлических конструкций по СП 16.13330.2017

Регистрация →

Палубный аэрофинишер «Светлана-2»

Одним из действий, регулярно осуществляемых при боевом дежурстве авианосца, является посадка летательного аппарата (ЛА) на его палубу. Посадка на палубу – это сложный процесс, требующий как квалифицированных действий пилота и командующего полетами, так и безотказной работы системы торможения – аэрофинишера. Одним из факторов, влияющих на безопасность посадки, является динамическая прочность троса аэрофинишера, а также оптимальная настройка системы на прием ЛА заданной массы с заданным вектором посадочной скорости. Задача создания, верификации и применения численной модели аэрофинишера для исследования его динамического поведения, является чрезвычайно актуальной.

Объект исследования в работе – палубный гаковый аэрофинишер «Светлана-2», предназначенный для торможения ЛА массой от 12 до 25 т, с посадочными скоростями от 210 до 240 км/ч. Аэрофинишер должен обеспечивать тормозной путь, не зависящий от массы и посадочной скорости ЛА, и равный приблизительно 90 м. Перегрузки, испытываемые пилотом ЛА, не должны превышать 4,5g.

Палубный гаковый аэрофинишер представляет собой гидравлический плунжерный тормоз, соединенный через систему блоков и демпфирующих устройств с приемным тросом, натянутым поперек взлетно-посадочной полосы и покоящимся на тросоподъемниках (Рисунок 1).

Figure1

Рисунок 1. Конструктивная схема палубного аэрофинишера [по Матвеенко А.М. Аэродромные системы торможения. – М.: Машиностроение, 1984]:

1 – пульт управления уставкой; 2 – соединительная муфта; 3 – приемный трос; 4 – поршень акку­мулятора; 5 – аккумулятор; 6 – воздушный баллон аккумулятора; 7 – тормозной трос; 8 – гидроцилиндр ТМ; 9 – плунжер; 10 – подвижная каретка; 11 – трубопровод; 12 – неподвиж­ная  каретка; 13 – приводная  цепь; 14 – регулировочный клапан; 15 – селектор массы ЛА; 16 – тросоподъемники; 17 – тросовая система обратной связи; 18 – рычаги регулировочного клапана.

При посадке ЛА происходит зацепление гаком, расположенным в хвостовой части фюзеляжа, за приемный трос (3). Приемный трос соединен при помощи двух соединительных муфт (2) с тормозным тросом (7). Вследствие разделения троса аэрофинишера на приемный и тормозной, а также благодаря наличию соединительных муфт, становится возможной периодическая замена приемного троса, необходимость которой обусловлена истиранием и обрывом его внешних прядей в зоне контактного взаимодействия с гаком ЛА. Тормозной трос запасован в восемнадцатикратный полиспаст, оси блоков которого установлены на подвижной (10) и неподвижной (12) каретках. В процессе вытяжки троса, обусловленной движением ЛА по палубе, происходит движение подвижной каретки навстречу неподвижной. Подвижная каретка жестко закреплена на плунжере (9) тормозной машины (ТМ), который движется в гидроцилиндре (8), продавливая масло через регулировочный клапан (14) в аккумулятор (5). Аккумулятор состоит из двух полостей, разделенных поршнем, при перемещении которого повышается давление воздуха в баллоне (6). На регулировочном клапане расположен селектор массы (15) принимаемого самолета, с помощью которого задается «уставка» – значение ожидаемой посадочной массы ЛА. Заданная уставка определяет начальную степень закрытия регулировочного клапана. Подвижная каретка через тросовую систему обратной связи (17), приводную цепь (13), кулачковый механизм и систему рычагов (18) соединена с регулировочным клапаном таким образом, что при движении подвижной каретки клапан закрывается, уменьшая проходное сечение гидравлической системы, тем самым увеличивая ее сопротивление движению ЛА. Благодаря корректному заданию значения уставки, при посадках должен обеспечиваться независящий от массы и начальной скорости ЛА тормозной путь.

Моделирование динамики аэрофинишера

Моделирование аэрофинишера сведено к исследованию динамического поведения нелинейной механической системы, состоящей из упругого троса, вязких и упругих элементов, распределенных и сосредоточенных масс, с учетом множественного контактного взаимодейст­вия.

Расчетная модель аэрофинишера «Светлана-2» представлена на Рисунке 2. 

Расчетная модель аэрофинишера «Светлана-2»

Рисунок 2. Расчетная модель аэрофинишера «Светлана-2»

При использовании метода конечных элементов для дискретизации по пространству задача сводится к решению матричного дифференциального уравнения динамики. Для прямого численного интегрирования данного уравнения выбран явный метод цен­тральных разностей. Значение шага интегрирования выбирается в соответствии с условием устойчивости Куранта. Для описания контактного взаимодействия между тросом и блоками аэрофинишера в диссертационной работе выбран метод штрафных функций, фактически заключающийся в добавлении между контактирующими телами пружин с определенной жесткостью. Преимуществами данного метода являются, в частности, возможность применения к абсолютно твердым телам, отсутствие возбуждения численного эффекта деформации элементов по форме «песочных часов» (hourglassing).

Разработанная в программной системeLS-DYNA конечно-элементная модель аэрофинишера представлена на Рисунке 3. Модель содержит все основные элементы реальной конструкции. В данную модель гидравлический тормоз включен в редуцированном виде, как вязкоупругий элемент с нелинейными, зависящими от перемещения и скорости подвижной каретки, характеристиками. Для задания в модели параметров данного редуцированного элемента использовались результаты численного моделирования, полученные в работах других авторов, на основе многовариантных расчетов гидравлической системы с различными значениями гидравлического сопротивления.

Конечно-элементная модель аэрофинишера

Рисунок 3. Конечно-элементная модель аэрофинишера в системе LS-DYNA

Разработанная модель аэрофинишера «Светлана-2»:

  • содержит все основные элементы аэрофинишера: деформируемый трос, систему 49 блоков, демпфирующие устройства, гидравлическую систему, регулировочный клапан;
  • позволяет учитывать в качестве входных данных все параметры посадки и значение уставки;
  • позволяет получать в качестве выходных параметров все характеристики торможения.

Валидация модели аэрофинишера

С целью валидации созданной численной модели аэрофинишера, проведено моделирование посадки ЛА массой 11,5 т со скоростью 220 км/ч. Для количественной оценки адекватности модели выбрано интегральное значение погрешности зависимости давления в гидроцилиндре от времени, полученной с помощью разработанной численной модели, относительно экспериментальных данных (Рисунок 4). Относительное различие результатов моделирования с экспериментальными данными составило 10%. При этом значения максимального давления в процессе торможения, полученные численно и экспериментально, совпадают с точностью до 1%.

Figure4

Рисунок 4. Сравнение экспериментальной и расчетной зависимостей давления в гидроцилиндре финишера от времени в процессе торможения

Можно сделать выводы о высокой степени соответствия разработанной модели реальному объекту и правомерности ее использования для детальных исследований динамики аэрофинишера.

Разработанная численная модель помимо графиков изменения характеристик торможения от времени позволяет получать волновую картину, наблюдаемую в тросе в процессе торможения ЛА. На Рисунке 5 представлены мгновенные состояния аэрофинишера в различные моменты времени.

Динамика-троса-аэрофинишера

Рисунок 5. Мгновенные состояния троса аэрофинишера в различные моменты времени

В работе выполнены многовариантные исследования динамического поведения аэрофинишера в зависимости от параметров посадки (масса ЛА, скорость ЛА в момент зацепления за приемный трос, величина силы тяги), а также значений массы каретки и уставки селектора массы. Полученные результаты численного моделирования показывают, что при определенных значениях параметров посадки, на графиках ускорения ЛА, давления в гидроцилиндре, усилия в тросе, наблюдается максимум на 2-3 секунде торможения. С целью снижения данных перегрузок, в работе предложен и апробирован метод корректировки уставки в зависимости от действующей силы тяги. Полученные результаты показали, что с помощью корректировки значения уставки по предложенному алгоритму возможно снизить перегрузки на 2-3 секундах торможения на 15-30%, в зависимости от значения силы тяги.

С помощью разработанной модели исследованы нештатные случаи посадок с существенным несоответствием заданной уставки фактической массе ЛА.  С помощью разработанной модели аэрофинишера автором работы в составе группы экспертов по поручению Военной Прокуратуры РФ были выполнены многовариантные расчетные исследования в рамках расследования с целью всестороннего, полного и объективного выяснения обстоятельств аварии самолета Су-33, бортовой номер 82, произошедшей 05 сентября 2005 г. Проведенные исследования позволили сделать выводы о возможных сценариях произошедшей аварии.

Основные результаты работы

1. Разработан алгоритм создания численной модели аэрофинишера, учитывающей все его основные элементы и обладающей высокой степенью адекватности.

2. Создана численная модель аэрофинишера, описывающая его динамическое поведение при посадке ЛА, и позволяющая определять все характеристики торможения. Проведена проверка адекватности созданной численной модели аэрофинишера путем сравнения полученных результатов с экспериментальными данными.

3. С помощью разработанной модели решена серия практических задач и определены степени влияния параметров посадки на характеристики торможения. Предложен алгоритм корректировки уставки с учетом силы тяги, с целью снижения нагрузок на приемный трос, ЛА и элементы гидравлической системы аэрофинишера.

4. Проведено численное моделирование и исследование нештатных случаев нагружения аэрофинишера и показана возможность обрыва троса и разрушения гидроцилиндра в случае некорректного задания уставки.

Статья подготовлена на основе материалов диссертации "Конечно-элементное моделирование и исследование динамики палубного аэрофинишера"

Год: 
2009
Автор научной работы: 
Михалюк Дмитрий Сергеевич
Ученая cтепень: 
кандидат технических наук
Место защиты диссертации: 
Санкт-Петербург
Код cпециальности ВАК: 
01.02.06
Специальность: 
Динамика, прочность машин, приборов и аппаратуры
вернуться к списку новостей
Рассчитать стоимость онлайн
Сообщите основную информацию о вашей задаче, ответьте на несколько вопросов и мгновенно получите оценку трудоемкости актуальной для вас инженерной задачи.
Узнать цену
Связанные новости
21 октября 2024

Международный строительный форум и выставка 100+ TechnoBuild

Делегация специалистов АО «ЦИФРА» с 1 по 3 октября 2024 года приняла участие в работе XI международного строительного форума и посетила выставку 100+ TechnoBuild.
Новости
27 сентября 2024

VII Научно-техническая конференция «Технологии обустройства нефтяных, газовых и газоконденсатных месторождений»

23-25 сентября делегация АО «ЦИФРА» приняла участие в работе VII Научно-технической конференции «Технологии обустройства нефтяных, газовых и газоконденсатных месторождений».
Новости
Связанные публикации в блоге
11 декабря 2024

Сейсмостойкость резервуаров частично заполненных жидкостью

В инженерной практике проектирование и анализ прочности частично заполненных резервуаров имеют особую важность, особенно в регионах, подверженных сейсмической активности. Во время землетрясений динамические нагрузки на такие конструкции могут привести к значительным напряжениям, способным нарушить структурную целостность конструкции. Сложное взаимодействие между жидкостью внутри резервуара и стенками резервуара требует тщательного рассмотрения, так как движение жидкости во время землетрясения может усилить воздействующие на конструкцию силы.
Блог
5 ноября 2024

Расчёт прочности узлов металлоконструкций

При проведении оценки прочности металлических конструкций в качестве сопутствующей задачи выступает анализ локальной прочности узлов соединения элементов металлоконструкций, например, фланцевых, фрикционных или срезных соединений.
Блог
Связанные вебинары
20 ноября 2024

Научно-техническое сопровождение проектирования особо опасных и технически сложных промышленных объектов

Приглашаем на открытый вебинар, посвящённый актуальным вопросам проведения научно-технического сопровождения проектирования (НТС).
Вебинары
6 ноября 2024

Расчёты на прочность сосудов и аппаратов в соответствии с нормативно-технической документацией РФ

Приглашаем на открытый вебинар, посвящённый актуальным вопросам проведения расчётов на прочность сосудов и аппаратов в соответствии с нормативно-технической документацией РФ
Вебинары
Расскажите о вашей задаче
Изменить файл
Поля, отмеченные звездочкой (*) обязательны для заполнения.
Успешно отправлено! Наш специалист свяжется с Вами в ближайшее время!