8 812 123 45 67
Тепловой расчет противопожарной огнестойкой преграды

Инженерами АО «ЦИФРА» выполнен тепловой расчет многослойного противопожарного полотна, моделирующий испытание конструкции на огнестойкость, с подбором толщины для соответствия требованиям ГОСТ.

Целью расчета является анализ теплового состояния противопожарного огнестойкого полотна и проверка выполнения требований по обеспечению его теплоизолирующей способности.

Объектом исследования является многослойное противопожарное полотно. Полотно имеет следующий состав слоев (по номерам слоев): 1-2-3-2-1. Слой 1 представляет собой кремнеземневую ткань. Слой 2 представляет собой окисленный графит. Слой 3 – керамическая фибра. Основной компонент такого противопожарного элемента — окисленный графит, выбор которого обусловлен его способностью многократно расширятся по мере воздействия высокой температуры. В объеме окисленный графит способен расширяться до 2000%. После расширения окисленный графит формирует твердую массу, структура которой напоминает пемзу. На рисунке ниже приведена схема сечения многослойного полотна.

Подобные многослойные полотна применяются в производстве противопожарных огнестойких преград. Противопожарные преграды служат для перекрытия и защиты территории от дыма и огня в случае пожара. Также противопожарные огнестойкие преграды помогают локализовать возгорание, предотвратить распространение огня и направить продукты горения к системам дымоудаления, что позволит снизить величину материлиального ущерба и даст людям возможность эвакуироваться.

(фото: спецпроектпб.рф)

Испытания противопожарных преград

В соответствии с государственным стандартом, все противопожарные конструкции, такие, как противопожарные ворота, шторы, преграды и др., должны проходить испытания на огнестойкость. В процессе испытания определяется время, в течение которого конструкция не теряет своей целостности и теплоизолирующей способности под воздействием огня. На обогреваемую поверхность испытуемой конструкции воздействует пожар. На необогреваемую сторону конструкции устанавливаются датчики, фиксирующие изменение температуры на поверхности. По результатам испытания конструкция сертифицируется. Подобные испытания проводятся в специализированных печах. Температура в печи меняется согласно закону, установленному ГОСТ 30247.0-94.

Постановка задачи

Для многослойного противопожарного полотна проведен связанный термомеханический расчет. Решена плоская задача в симметричной постановке.

На грань полотна со стороны пожара задано условие конвективного теплообмена, моделирующего тепловое воздействие. Закон изменения температуры среды во времени соответствует температурному режиму испытаний согласно разделу 6 ГОСТ 30247.0-94:

где T – температура в печи, соответствующая времени t, °C;

T0 – температура в печи до начала теплового воздействия (принимают равной температуре окружающей среды), °C;

t – время, исчисляемое от начала испытаний, мин.

t – время, исчисляемое от начала испытаний, мин.

Для полотна предел огнестойкости установлен как EI 60, длительность теплового воздействия согласно ГОСТ 30247.0-94 равна 60 минутам. 

На необогреваемой грани противопожарного полотна задается условие конвективного теплообмена с открытым воздухом и фиксируется изменение температуры на поверхности. 

Действующие граничные условия показаны на рисунке ниже. Также в модели учтено тепловое излучение.

Для того чтобы промоделировать расширение слоя окисленного графита по мере роста температуры и падение его теплопроводности использованы температурно-зависимые свойства. Использованные температурные зависимости для окисленного графита приведены ниже.

 

Результаты расчета противопожарного полотна

Недопустимым условием в процессе испытания является достижение предельного состояния по показателю теплоизолирующей способности. Достижением предельного состояния потери теплоизолирующей способности, согласно разделу 5 ГОСТ Р 53307-2009, считается повышение температуры на необогреваемой поверхности полотна опытного образца в среднем более чем на 140 °С, или в любой контролируемой точке этой поверхности на 180 °С в сравнении с температурой конструкции до испытания.

На рисунке ниже показано распределение полей температур в конечный момент времени (70 минут).

Ниже приведены графики, на которых показано изменение температуры на необогреваемой и обогреваемой поверхности полотна в течении 70 минут нагрева.

Температура конструкции до испытания равна температуре окружающей среды 22°С. По результатам расчета видно, что минимальное значение температуры на поверхности пластины в момент времени 60 минут составляет 210°С, что превышает температуру конструкции до испытания на 192°С. Происходит потеря теплоизолирующей способности противопожарного полотна.

Для того, чтобы требования установленные ГОСТ 53307-2009 выполнялись, проведен подбор толщин слоев многослойного полотна. На рисунке ниже показано распределение полей температур в конечный момент времени для полотна с утолщенными слоями.

По результатам расчета видно, что распределение температур на необогреваемой поверхности полотна носит равномерный характер и в конечный момент времени составляет ~160 °С, что превышает температуру конструкции до испытания на 138 °С. Условия теплоизоляции согласно ГОСТ Р 53307-2009З выполняются.

Заключение

Проведен тепловой расчет многослойного противопожарного огнестойкого полотна, применяющегося для производства противопожарных преград. В результате расчета определено, что в процессе испытания происходит достижение предельного состояния противопожарного полотна по показателю теплоизолирующей способности. Произведен подбор толщин, при которой обеспечивается сохранение теплоизолирующей способности противопожарного огнестойкого полотна.

вернуться к списку новостей
Рассчитать стоимость онлайн
Сообщите основную информацию о вашей задаче, ответьте на несколько вопросов и мгновенно получите оценку трудоемкости актуальной для вас инженерной задачи.
Узнать цену
Связанные новости
17 октября 2022

Эксперты АО «ЦИФРА» выступили на нефтегазовой конференции АО «ТомскНИПИнефть»

Специалисты АО «ЦИФРА» приняли участие в V научно-технической конференции «Технологии обустройства нефтяных, газовых и газоконденсатных месторождений», организованной АО «ТомскНИПИнефть». Событие состоялось 20-21 сентября 2022 года и стало местом встречи учёных и практиков, проектировщиков и представителей служб эксплуатации – специалистов, представляющих наиболее актуальные разработки в сфере обустройства, подготовки нефти и газа.
Новости
12 октября 2022

Отзывы стажеров 2021-2022

Продолжаем публиковать отзывы молодых специалистов, прошедших полный курс стажировки и стали сотрудниками компании.
Новости
Связанные публикации в блоге
19 июля 2022

Численное моделирование процессов горения твердого ракетного топлива

В ракетно-космической отрасли наибольшее распространение получили двигатели на жидком и твёрдом ракетном топливе. Среди преимуществ твердотопливных ракетных двигателей можно отметить как длительный срок хранения топлива, так и относительную простоту конструкции и дешевизну самих двигателей, что обуславливает их широкое применение в этой отрасли. Одним из важнейших процессов в камере сгорания ракетного двигателя является процесс горения твёрдого топлива, так как он определяет газоприход в двигателе и, следовательно, его секундный массовый расход и развиваемую тягу.
Блог
21 апреля 2022

Ткань против пули. Математическое моделирование испытаний бронеткани согласно ГОСТ 34286-2017

Бронеодеждой или БО согласно ГОСТ 34286-2017 называют средства индивидуальной броневой защиты, выполненные в виде пальто, накидок, плащей, костюмов, курток, брюк, комбинезонов, жилетов и т.п., предназначенные для периодического ношения с целью защиты туловища и (или) конечностей человека (за исключением стоп ног и кистей рук) от воздействия холодного оружия и огнестрельного стрелкового оружия, а также поражения осколками (далее - средства поражения). БО применяется тогда, когда может потребоваться защита жизни и здоровья человека. Она классифицируется и для нее проводятся испытания согласно назначенным классам.
Блог
Связанные вебинары
23 июля 2020

Применение компьютерного моделирования при ремонте и модернизации судов

В рамках Договора о научно-техническом сотрудничестве между АО «ЦНИИМФ» и АО «ЦИФРА» на данном вебинаре заведующий отделом конструктивной надежности и защиты судов от коррозии АО «ЦНИИМФ» Алексей Петров расскажет об имеющемся опыте и перспективах использования компьютерного моделирования для решения различных задач, связанных с ремонтом или модернизацией судов в эксплуатации.
Вебинары
3 июня 2020

Моделирование и расчёт композитных конструкций при динамическом нагружении

АО "ЦИФРА" объявляет о проведении серии лекций-вебинаров от ведущих приглашенных экспертов в области численного моделирования. В ходе первого вебинара данной серии будут рассмотрены вопросы прочностного анализа «легких» (lightweight) композитных конструкций при динамическом нагружении с использованием явных решателей (сеточного и бессеточного) ПО LS-DYNA.
Вебинары
Сделайте заказ
Изменить файл
Поля, отмеченные звездочкой (*) обязательны для заполнения.
Успешно отправлено! Наш специалист свяжется с Вами в ближайшее время!