Научные публикации

Численное моделирование динамики и прочности железобетонной плиты под воздействием воздушной ударной волны

«Вычислительная механика сплошных сред»
DOI:https://doi.org/10.7242/1999-6691/2020.13.3.24
Авторы: С. М. Герцик, Ю. В. Новожилов, Д.С. Михалюк

Рассматривается процесс деформирования и разрушения железобетонной плиты при воздействии воздушной ударной волны. При постановке задачи за основу берутся данные публичного эксперимента “Blind Blast Test”. Нагружение плиты производится путем подрыва взрывчатого вещества в ударной трубе. Количественно и качественно оцениваются результаты вычислений и эксперимента. Количественное сравнение проводится для истории перемещения ключевых точек конструкции в процессе деформирования. Качественное сравнение заключается в сопоставлении фотографий разрушений реальной железобетонной плиты и распределения поля поврежденности, полученного в результате расчетов. Численное моделирование осуществляется в пакете LS-DYNA, используется метод конечных элементов с явной схемой интегрирования по времени. Для материала бетона применяется модель CSCM (Continuous Surface Cap Model - шатровая модель с непрерывной предельной поверхностью), в которой полагается, что материал является изотропным, обладает трехинвариантной поверхностью текучести. Прочностные характеристики материала зависят от скорости нагружения, а его поврежденность рассматривается отдельно для сжимающих и растягивающих нагрузок, что позволяет учитывать частичное восстановление прочности при сжатии. В статье приводится математическое описание данной модели. Металлическое армирование бетонной плиты представляется в явном виде при помощи балочных конечных элементов. Конечно-элементные сетки массива бетона и армирующих элементов связываются между собой посредством кинематических зависимостей, автоматизировано создаваемых расчетным кодом. Свойства материала арматуры задаются в рамках классической упругопластической теории течения с учетом критерия предельных состояний в форме Губера-Мизеса, отображающего вязко-пластические эффекты. Изучается влияние граничных условий, практическая сеточная сходимость, способность математической модели предсказывать расположение зон разрушения материала, перемещения и деформации конструкции.

Numerical simulation of the dynamics of a reinforced concrete slab under an air shock wave

"Computational Continuum Mechanics"

Authors: S. M. Gertsik, Yu. V. Novozhilov, D. S. Mikhaluk

Deformation and fracture of a reinforced concrete slab under the effect of an air shock wave are considered. The research involves data from the public experiment "Blind Blast Test". The slab is loaded by an air shock wave resulting from high explosive detonation in a shock tube. The results of calculations and experiments are compared quantitatively and qualitatively. Quantitative comparison is made for the history of movement of the reinforced concrete slab key points during the process of deformation. Qualitative comparison is made for photographs of the destruction of a real reinforced concrete slab and distribution of the damage fields obtained by calculation. The numerical simulation is carried out in the LS-DYNA code, and the finite element method with an explicit time integration scheme is used. The CSCM (Continuous Surface Cap Model) model is used to model the concrete material. This model is an isotropic constitutive model with three-variant surface of ductility; the strength characteristics of the material depend on the rate of loading, and its damage is considered separately for compressive and tensile loads, which allows taking into account the partial recovery of compressive strength. The mathematical description of the model is given as part of the paper. Steel reinforcement of the concrete slab is modeled explicitly with beam finite elements. Finite element meshes of the concrete volume and reinforcing elements are coupled by means of the kinematic automatically calculated equations. The properties of the reinforcement are set within the classical theory of elastic-plastic strengthening material flow with the criterion of limiting states in the form of Huber-Mizes and taking into account visco-plastic effects. The influence of boundary conditions, practical mesh convergence, and capability of the mathematical model to predict the location of zones of material failure, displacement, and deformation of the structure are studied.

Связанные новости
19 апреля 2022 года состоялось заседание секции №6 «Прочность и надежность строительных конструкций зданий и сооружений» Экспертного совета по аттестации программ для ЭВМ при Научно-техническом центре по ядерной и радиационной безопасности (ФБУ «НТЦ ЯРБ») Ростехнадзора.
АО «ЦИФРА» приняла участие в треке «Математическое моделирование» в рамках образовательного форума "Phygital universe", который проходил в Санкт-Петербургском политехническом университете Петра Великого. 27 апреля руководитель инженерной группы АО «ЦИФРА» Юрий Лавров, а также инженеры Рубцов Иван и Васильева Дарья выступили в Высшей школе теоретической механики с презентацией проектов из инженерной практики. 29 апреля Юрий и Дарья оценивали навыки математического моделирования и инженерного мышления участников форума при решении практического кейса от АО «ЦИФРА». По результатам защиты кейсов выбрано 5 победителей, которые получат дополнительные 10 баллов при поступлении в магистратуру в СПбПУ.
Связанные публикации в блоге
Бронеодеждой или БО согласно ГОСТ 34286-2017 называют средства индивидуальной броневой защиты, выполненные в виде пальто, накидок, плащей, костюмов, курток, брюк, комбинезонов, жилетов и т.п., предназначенные для периодического ношения с целью защиты туловища и (или) конечностей человека (за исключением стоп ног и кистей рук) от воздействия холодного оружия и огнестрельного стрелкового оружия, а также поражения осколками (далее - средства поражения). БО применяется тогда, когда может потребоваться защита жизни и здоровья человека. Она классифицируется и для нее проводятся испытания согласно назначенным классам.
Основной эксплуатационной характеристикой судна, определяющей возможности работы судна в ледовых условиях, является его ледовый класс. В прошлом каждое классификационное общество имело свою уникальную систему классификации судов ледового плавания, и, как следствие – свои нормативные требования к таким судам, однако в начале 2000-х годов Международной ассоциацией классификационных обществ (МАКО) была проведена работа по унификации этих требований, результатом которой стало введение двух систем классификации судов ледового плавания: системы балтийских ледовых классов (для плавания в Балтийском море и схожих по ледовым условиям морях) и системы полярных классов (для плавания в полярных водах), при этом требования каждого классификационного общества-члена МАКО остались в силе. Со вступлением в силу в 2017 году Международного кодекса для судов, эксплуатирующихся в полярных водах (Полярного кодекса) особенно актуальным стал вопрос присвоения судну полярного класса. Несмотря на то, что МАКО была определена приблизительная эквивалентность ледовых классов различных систем классификации (см. рис. 1), на практике для получения полярного класса необходимо подтверждение соответствия судна требованиям IACS UR I – requirements concerning Polar Class. Эти требования разделяются на корпус и механические установки. Рассмотрим пример выполнения анализа соответствия механических установок судна полярному классу.
Связанные вебинары
В рамках Договора о научно-техническом сотрудничестве между АО «ЦНИИМФ» и АО «ЦИФРА» на данном вебинаре заведующий отделом конструктивной надежности и защиты судов от коррозии АО «ЦНИИМФ» Алексей Петров расскажет об имеющемся опыте и перспективах использования компьютерного моделирования для решения различных задач, связанных с ремонтом или модернизацией судов в эксплуатации.

Закажите расчет

Команде профессионалов
Изменить файл
Поля, отмеченные звездочкой (*) обязательны для заполнения.